Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38934256

RESUMO

Canadian wildfires in 2023 were record breaking with wide-reaching impacts on people, nature, and climate. Extreme heat and low rainfall associated with climate change led to unprecedented forest fires that released enormous amounts of carbon as they burned. This study used data on fire-driven tree cover loss and forest carbon fluxes to estimate the total extent of stand-replacing forest fires and their associated carbon emissions. We found that the 2023 Canadian wildfires burned nearly 7.8 million hectares of forest and accounted for more than a quarter of all tree cover loss globally. Furthermore, forests impacted by wildfires emitted nearly 3 billion tons of CO2 or about 25% more carbon than all primary tropical tree cover loss that year. These results have important implications for global carbon budgets because emissions from these wildfires will largely be excluded from official greenhouse gas reporting.


Assuntos
Mudança Climática , Florestas , Árvores , Incêndios Florestais , Canadá , Dióxido de Carbono/análise , Carbono/análise , Ciclo do Carbono
2.
Environ Manage ; 58(2): 297-311, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179802

RESUMO

Many researchers have tested whether protected areas save tropical forest, but generally focus on parks and reserves, management units that have internationally recognized standing and clear objectives. Buffer zones have received considerably less attention because of their ambiguous rules and often informal status. Although buffer zones are frequently dismissed as ineffective, they warrant attention given the need for landscape-level approaches to conservation and their prevalence around the world-in Peru, buffer zones cover >10 % of the country. This study examines the effectiveness of buffer zones in the Peruvian Amazon to (a) prevent deforestation and (b) limit the extent of mining concessions. We employ covariate matching to determine the impact of 13 buffer zones on deforestation and mining concessions from 2007 to 2012. Despite variation between sites, these 13 buffer zones have prevented ~320 km(2) of forest loss within their borders during the study period and ~1739 km(2) of mining concessions, an outcome associated with the special approval process for granting formal concessions in these areas. However, a closer look at the buffer zone around the Tambopata National Reserve reveals the difficulties of controlling illegal and informal activities. According to interviews with NGO employees, government officials, and community leaders, enforcement of conservation is limited by uncertain institutional responsibilities, inadequate budgets, and corruption, although formal and community-based efforts to block illicit mining are on the rise. Landscape-level conservation not only requires clear legal protocol for addressing large-scale, formal extractive activities, but there must also be strategies and coordination to combat illegal activities.


Assuntos
Conservação dos Recursos Naturais , Florestas , Mineração , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Órgãos Governamentais , Regulamentação Governamental , Mineração/legislação & jurisprudência , Indústria de Petróleo e Gás , Peru
3.
Science ; 377(6611): eabm9267, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074840

RESUMO

Tropical deforestation continues at alarming rates with profound impacts on ecosystems, climate, and livelihoods, prompting renewed commitments to halt its continuation. Although it is well established that agriculture is a dominant driver of deforestation, rates and mechanisms remain disputed and often lack a clear evidence base. We synthesize the best available pantropical evidence to provide clarity on how agriculture drives deforestation. Although most (90 to 99%) deforestation across the tropics 2011 to 2015 was driven by agriculture, only 45 to 65% of deforested land became productive agriculture within a few years. Therefore, ending deforestation likely requires combining measures to create deforestation-free supply chains with landscape governance interventions. We highlight key remaining evidence gaps including deforestation trends, commodity-specific land-use dynamics, and data from tropical dry forests and forests across Africa.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Florestas , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA