Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Biol ; 17(9): e3000445, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536487

RESUMO

Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5-τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity.


Assuntos
Sinalização do Cálcio , Plasticidade Neuronal , Canais de Cátion TRPC/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Glutamina/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Neurônios/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(30): 15236-15243, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285329

RESUMO

Dopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis. By analyzing female mice carrying targeted mutations in the Trpc5 gene including a conditional Trpc5 deletion, we show that Trpc5 is required for maintaining highly stereotyped infraslow membrane potential oscillations of dopamine ARC neurons. Trpc5 is also required for eliciting prolactin-evoked tonic plateau potentials in these neurons that are part of a regulatory feedback circuit. Trpc5 mutant females show severe prolactin deficiency or hypoprolactinemia that is associated with irregular reproductive cyclicity, gonadotropin imbalance, and impaired reproductive capabilities. These results reveal a previously unknown role for the cation channel Trpc5 in prolactin homeostasis of female mice and provide strategies to explore the genetic basis of reproductive disorders and other malfunctions associated with defective prolactin regulation in humans.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doenças Genéticas Inatas/genética , Transtornos da Lactação/genética , Prolactina/deficiência , Prolactina/genética , Canais de Cátion TRPC/genética , Animais , Núcleo Arqueado do Hipotálamo/patologia , Nível de Alerta/fisiologia , Neurônios Dopaminérgicos/patologia , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Gonadotropinas/sangue , Gonadotropinas/genética , Homeostase/genética , Humanos , Transtornos da Lactação/metabolismo , Transtornos da Lactação/patologia , Potenciais da Membrana/fisiologia , Camundongos , Mutação , Prolactina/sangue , Prolactina/metabolismo , Reprodução/fisiologia , Transdução de Sinais , Canais de Cátion TRPC/deficiência
3.
EMBO J ; 36(18): 2770-2789, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790178

RESUMO

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo , Multimerização Proteica , Transmissão Sináptica , Canais de Cátion TRPC/metabolismo , Animais , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética
4.
Gastroenterology ; 158(6): 1626-1641.e8, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930989

RESUMO

BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.


Assuntos
Idade de Início , Canais de Cálcio/genética , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/patologia , Pancreatite Crônica/patologia , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/metabolismo , Sequenciamento do Exoma , Adulto Jovem
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884497

RESUMO

Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in an in frame stop codon (R510stop) that leads to a truncated, nonfunctional TRPV6 channel, and the second in a point mutation (G660R) that, surprisingly, does not affect the Ca2+ permeability of TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child by coexpressing the TRPV6 G660R and R510stop mutants and combinations with wild type TRPV6. We show that both the G660R and R510stop mutant subunits are expressed and result in decreased calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an increase in the expression of proteases.


Assuntos
Canais de Cálcio/genética , Catepsina G/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Mutação , Osteocondrodisplasias/patologia , Placenta/patologia , Proteoma/metabolismo , Canais de Cátion TRPV/genética , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Estudos de Casos e Controles , Catepsina G/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Lactente , Camundongos Knockout , Osteocondrodisplasias/etiologia , Osteocondrodisplasias/metabolismo , Placenta/metabolismo , Gravidez , Proteoma/análise , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/fisiologia
6.
Cell Physiol Biochem ; 54(6): 1115-1131, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33166100

RESUMO

BACKGROUND/AIMS: The release of insulin in response to increased levels of glucose in the blood strongly depends on Ca2+ influx into pancreatic beta cells by the opening of voltage-gated Ca2+ channels. Transient Receptor Potential Melastatin 3 proteins build Ca2+ permeable, non-selective cation channels serving as pain sensors of noxious heat in the peripheral nervous system. TRPM3 channels are also strongly expressed in pancreatic beta cells that respond to the TRPM3 agonist pregnenolone sulfate with Ca2+ influx and increased insulin release. Therefore, we hypothesized that in beta cells TRPM3 channels may contribute to pregnenolone sulfate- as well as to glucose-induced insulin release. METHODS: We used INS-1 cells as a beta cell model in which we analysed the occurrence of TRPM3 isoformes by immunoprecipitation and western blotting and by cloning of RT-PCR amplified cDNA fragments. We applied pharmacological as well as CRISPR/Cas9-based strategies to analyse the interplay of TRPM3 and voltage-gated Ca2+ channels in imaging experiments (FMP, Fura-2) and electrophysiological recordings. In immunoassays, we examined the contribution of TRPM3 channels to pregnenolone sulfate- and glucose-induced insulin release. To confirm our findings, we generated beta cell-specific Trpm3-deficient mice and compared their glucose clearance with the wild type in glucose tolerance tests. RESULTS: TRPM3 channels triggered the activity of voltage-gated Ca2+ channels and both channels together contributed to insulin release after TRPM3 activation. Trpm3-deficient INS-1 cells lacked pregnenolone sulfate-induced Ca2+ signals just like the pregnenolone sulfate-induced insulin release. Both, glucose-induced Ca2+ signals and the glucose-induced insulin release were strongly reduced. Accordingly, Trpm3-deficient mice displayed an impaired decrease of the blood sugar concentration after intraperitoneal or oral administration of glucose. CONCLUSION: The present study suggests an important role for TRPM3 channels in the control of glucose-dependent insulin release.


Assuntos
Sinalização do Cálcio , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Mutantes , Ratos , Canais de Cátion TRPM/genética
7.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352987

RESUMO

Calcium-selective transient receptor potential Vanilloid 6 (TRPV6) channels are expressed in fetal labyrinth trophoblasts as part of the feto-maternal barrier, necessary for sufficient calcium supply, embryo growth, and bone development during pregnancy. Recently, we have shown a less- compact labyrinth morphology of Trpv6-deficient placentae, and reduced Ca2+ uptake of primary trophoblasts upon functional deletion of TRPV6. Trpv6-/- trophoblasts show a distinct calcium-dependent phenotype. Deep proteomic profiling of wt and Trpv6-/- primary trophoblasts using label-free quantitative mass spectrometry leads to the identification of 2778 proteins. Among those, a group of proteases, including high-temperature requirement A serine peptidase 1 (HTRA1) and different granzymes are more abundantly expressed in Trpv6-/- trophoblast lysates, whereas the extracellular matrix protein fibronectin and the fibronectin-domain-containing protein 3A (FND3A) were markedly reduced. Trpv6-/-placenta lysates contain a higher intrinsic proteolytic activity increasing fibronectin degradation. Our results show that the extracellular matrix formation of the placental labyrinth depends on TRPV6; its deletion in trophoblasts correlates with the increased expression of proteases controlling the extracellular matrix in the labyrinth during pregnancy.


Assuntos
Matriz Extracelular/metabolismo , Placenta/metabolismo , Canais de Cátion TRPV/metabolismo , Transporte Biológico , Biomarcadores , Cálcio/metabolismo , Movimento Celular/genética , Sobrevivência Celular/genética , Biologia Computacional , Feminino , Técnicas de Silenciamento de Genes , Humanos , Gravidez , Proteólise , Proteoma , Proteômica , Canais de Cátion TRPV/genética
8.
Glia ; 65(9): 1535-1549, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28636132

RESUMO

Following brain injury astrocytes change into a reactive state, proliferate and grow into the site of lesion, a process called astrogliosis, initiated and regulated by changes in cytoplasmic Ca2+ . Transient receptor potential canonical (TRPC) channels may contribute to Ca2+ influx but their presence and possible function in astrocytes is not known. By RT-PCR and RNA sequencing we identified transcripts of Trpc1, Trpc2, Trpc3, and Trpc4 in FACS-sorted glutamate aspartate transporter (GLAST)-positive cultured mouse cortical astrocytes and subcloned full-length Trpc1 and Trpc3 cDNAs from these cells. Ca2+ entry in cortical astrocytes depended on TRPC3 and was increased in the absence of Trpc1. After co-expression of Trpc1 and Trpc3 in HEK-293 cells both proteins co-immunoprecipitate and form functional heteromeric channels, with TRPC1 reducing TRPC3 activity. In vitro, lack of Trpc3 reduced astrocyte proliferation and migration whereas the TRPC3 gain-of-function moonwalker mutation and Trpc1 deficiency increased astrocyte migration. In vivo, astrogliosis and cortex edema following stab wound injury were reduced in Trpc3-/- but increased in Trpc1-/- mice. In summary, our results show a decisive contribution of TRPC3 to astrocyte Ca2+ signaling, which is even augmented in the absence of Trpc1, in particular following brain injury. Targeted therapies to reduce TRPC3 channel activity in astrocytes might therefore be beneficial in traumatic brain injury.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Córtex Cerebral/lesões , Gliose/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Astrócitos/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Gliose/etiologia , Gliose/patologia , Células HEK293 , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Ferimentos Perfurantes/metabolismo , Ferimentos Perfurantes/patologia
9.
Eur J Neurosci ; 40(10): 3422-35, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25195871

RESUMO

We investigated the role of voltage-activated calcium (Cav) channels for synaptic transmission at mouse olfactory and vomeronasal nerve terminals at the first synapse of the main and accessory olfactory pathways, respectively. We provided evidence for a central role of the N-type Cav channel subunit Cav2.2 in presynaptic transmitter release at these synapses. Striking Cav2.2 immunoreactivity was localised to the glomerular neuropil of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB), and co-localised with presynaptic molecules such as bassoon. Voltage-clamp recordings of sensory nerve-evoked, excitatory postsynaptic currents (EPSCs) in mitral/tufted (M/T) and superficial tufted cells of the MOB and mitral cells of the AOB, in combination with established subtype-specific Cav channel toxins, indicated a predominant role of N-type channels in transmitter release at these synapses, whereas L-type, P/Q-type, and R-type channels had either no or only relatively minor contributions. In Cacna1b mutant mice lacking the Cav2.2 (α1B) subunit of N-type channels, olfactory nerve-evoked M/T cell EPSCs were not reduced but became blocker-resistant, thus indicating a major reorganisation and compensation of Cav channel subunits as a result of the Cav2.2 deletion at this synapse. Cav2.2-deficient mice also revealed that Cav2.2 was critically required for paired-pulse depression of olfactory nerve-evoked EPSCs in M/T cells of the MOB, and they demonstrated an essential requirement for Cav2.2 in vomeronasal nerve-evoked EPSCs of AOB mitral cells. Thus, Cacna1b loss-of-function mutations are unlikely to cause general anosmia but Cacna1b emerges as a strong candidate in the search for mutations causing altered olfactory perception, such as changes in general olfactory sensitivity and altered social responses to chemostimuli.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Bulbo Olfatório/fisiologia , Transmissão Sináptica/fisiologia , Órgão Vomeronasal/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Proteína de Marcador Olfatório/metabolismo , Nervo Olfatório/efeitos dos fármacos , Nervo Olfatório/fisiologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Órgão Vomeronasal/efeitos dos fármacos , Órgão Vomeronasal/inervação
10.
Handb Exp Pharmacol ; 222: 359-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24756713

RESUMO

TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).


Assuntos
Canais de Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio/química , Canais de Cálcio/deficiência , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Potenciais da Membrana , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fenótipo , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade , Canais de Cátion TRPV/química , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética
11.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557489

RESUMO

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Assuntos
Canais de Cálcio , Cálcio , Camundongos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Pâncreas/metabolismo , Exocitose/fisiologia , Vesículas Secretórias/genética
12.
J Biol Chem ; 287(22): 17930-41, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22427671

RESUMO

Replacement of aspartate residue 541 by alanine (D541A) in the pore of TRPV6 channels in mice disrupts Ca(2+) absorption by the epididymal epithelium, resulting in abnormally high Ca(2+) concentrations in epididymal luminal fluid and in a dramatic but incomplete loss of sperm motility and fertilization capacity, raising the possibility of residual activity of channels formed by TRPV6(D541A) proteins (Weissgerber, P., Kriebs, U., Tsvilovskyy, V., Olausson, J., Kretz, O., Stoerger, C., Vennekens, R., Wissenbach, U., Middendorff, R., Flockerzi, V., and Freichel, M. (2011) Sci. Signal. 4, ra27). It is known from other cation channels that introducing pore mutations even if they largely affect their conductivity and permeability can evoke considerably different phenotypes compared with the deletion of the corresponding protein. Therefore, we generated TRPV6-deficient mice (Trpv6(-/-)) by deleting exons encoding transmembrane domains with the pore-forming region and the complete cytosolic C terminus harboring binding sites for TRPV6-associated proteins that regulate its activity and plasma membrane anchoring. Using this strategy, we aimed to determine whether the TRPV6(D541A) pore mutant still contributes to residual channel activity and/or channel-independent functions in vivo. Trpv6(-/-) males reveal severe defects in fertility and motility and viability of sperm and a significant increase in epididymal luminal Ca(2+) concentration that is mirrored by a lack of Ca(2+) uptake by the epididymal epithelium. Therewith, Trpv6 excision affects epididymal Ca(2+) handling and male fertility to the same extent as the introduction of the D541A pore mutation, arguing against residual functions of the TRPV6(D541A) pore mutant in epididymal epithelial cells.


Assuntos
Canais de Cálcio/genética , Cálcio/metabolismo , Epididimo/metabolismo , Fertilidade/genética , Deleção de Genes , Mutação , Canais de Cátion TRPV/genética , Animais , Sequência de Bases , Primers do DNA , Feminino , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/genética
13.
J Biol Chem ; 286(18): 15875-82, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21357697

RESUMO

The major L-type voltage-gated calcium channels in heart consist of an α1C (Ca(V)1.2) subunit usually associated with an auxiliary ß subunit (Ca(V)ß2). In embryonic cardiomyocytes, both the complete and the cardiac myocyte-specific null mutant of Ca(V)ß2 resulted in reduction of L-type calcium currents by up to 75%, compromising heart function and causing defective remodeling of intra- and extra-embryonic blood vessels followed by embryonic death. Here we conditionally excised the Ca(V)ß2 gene (cacnb2) specifically in cardiac myocytes of adult mice (KO). Upon gene deletion, Ca(V)ß2 protein expression declined by >96% in isolated cardiac myocytes and by >74% in protein fractions from heart. These latter protein fractions include Ca(V)ß2 proteins expressed in cardiac fibroblasts. Surprisingly, mice did not show any obvious impairment, although cacnb2 excision was not compensated by expression of other Ca(V)ß proteins or changes of Ca(V)1.2 protein levels. Calcium currents were still dihydropyridine-sensitive, but current density at 0 mV was reduced by <29%. The voltage for half-maximal activation was slightly shifted to more depolarized potentials in KO cardiomyocytes when compared with control cells, but the difference was not significant. In summary, Ca(V)ß2 appears to be a much stronger modulator of L-type calcium currents in embryonic than in adult cardiomyocytes. Although essential for embryonic survival, Ca(V)ß2 down-regulation in cardiomyocytes is well tolerated by the adult mice.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Miocárdio/enzimologia , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Fibroblastos/enzimologia , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Especificidade de Órgãos/genética
14.
J Cell Physiol ; 227(5): 1951-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732366

RESUMO

Bone is the major store for Ca(2+) in the body and plays an important role in Ca(2+) homeostasis. During bone formation and resorption Ca(2+) must be transported to and from bone by osteoblasts and osteoclasts, respectively. However, little is known about the Ca(2+) transport machinery in these bone cells. In this study, we examined the epithelial Ca(2+) channel TRPV6 in bone. TRPV6 mRNA is expressed in human and mouse osteoblast-like cells as well as in peripheral blood mononuclear cell-derived human osteoclasts and murine tibial bone marrow-derived osteoclasts. Also other transcellular Ca(2+) transport genes, calbindin-D(9k) and/or -D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+) ATPase (PMCA1b) were expressed in these bone cell types. Immunofluorescence and confocal microscopy on human osteoblasts and osteoclasts and mouse osteoclasts revealed TRPV6 protein at the apical domain and PMCA1b at the osteoidal domain of osteoblasts, whereas in osteoclasts TRPV6 was predominantly found at the bone-facing site. TRPV6 was dynamically expressed in human osteoblasts, showing maximal expression during mineralization of the extracellular matrix. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) did not change TRPV6 expression in both mineralizing and non-mineralizing SV-HFO cultures. Lentiviral transduction-mediated overexpression of TRPV6 in these cells did not alter mineralization. Bone microarchitecture and mineralization were unaffected in Trpv6(D541A/D541A) mice in which aspartate 541 in the pore region was replaced with alanine to render TRPV6 channels non-functional. In summary, TRPV6 and other proteins involved in transcellular Ca(2+) transport are dynamically expressed in bone cells, while TRPV6 appears not crucial for bone metabolism and matrix mineralization in mice.


Assuntos
Osso e Ossos/citologia , Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Canais de Cálcio/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Canais de Cátion TRPV/genética , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Microtomografia por Raio-X/métodos
15.
Am J Physiol Gastrointest Liver Physiol ; 303(7): G879-85, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22878123

RESUMO

TRPV6 is considered the primary protein responsible for transcellular Ca2+ absorption. In vitro studies demonstrate that a negatively charged amino acid (D) within the putative pore region of mouse TRPV6 (position 541) is critical for Ca2+ permeation of the channel. To elucidate the role of TRPV6 in transepithelial Ca2+ transport in vivo, we functionally analyzed a TRPV6D541A/D541A knockin mouse model. After weaning, mice were fed a regular (1% wt/wt) or Ca2+-deficient (0.02% wt/wt) diet and housed in metabolic cages. Blood was sampled for Ca2+ measurements, and the expression of Ca2+ transport proteins was analyzed in kidney and duodenum. Intestinal 45Ca2+ uptake was measured in vivo by an absorption assay. Challenging the mice with the Ca2+-deficient diet resulted in hypocalcemia in wild-type and TRPV6D541A/D541A mice. On a low-Ca2+ diet both mouse strains displayed increased expression of intestinal TRPV6, calbindin-D(9K), and renal TRPV5. TRPV6D541A/D541A mice showed significantly impaired intestinal Ca2+ uptake compared with wild-type mice, and duodenal TRPV5 expression was increased in TRPV6D541A/D541A mice. On a normal diet, serum Ca2+ concentrations normalized in both mouse strains. Under these conditions, intestinal Ca2+ uptake was similar, and the expression levels of renal and intestinal Ca2+ transport proteins were not affected. We demonstrate that TRPV6D541A/D541A mice exhibit impaired transcellular Ca2+ absorption. Duodenal TRPV5 expression was increased in TRPV6D541A/D541A mice, albeit insufficient to correct for the diminished Ca2+ absorption. Under normal conditions, when passive Ca2+ transport is predominant, no differences between wild-type and TRPV6D541A/D541A mice were observed. Our results demonstrate a specific role for TRPV6 in transepithelial Ca2+ absorption.


Assuntos
Canais de Cálcio/metabolismo , Cálcio , Absorção Intestinal/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Calbindinas , Cálcio/sangue , Cálcio/farmacocinética , Proteínas de Ligação ao Cálcio/metabolismo , Dieta/efeitos adversos , Dieta/métodos , Hipocalcemia/metabolismo , Mucosa Intestinal/fisiologia , Rim/metabolismo , Camundongos , Camundongos Knockout , Canais de Cátion TRPV/genética , Transcitose
16.
Cell Calcium ; 104: 102573, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35366519

RESUMO

Independent of its function as a subunit of voltage-gated Ca2+ channels, the Cavß3 subunit desensitizes fibroblasts and pancreatic ß-cells to low concentrations of inositol-1,4,5-trisphosphate (IP3). This alters agonist-induced Ca2+ signaling and cellular functions, for example, insulin secretion and wound healing. A total of four Cavß subunits exist, Cavß1, Cavß2, Cavß3, and Cavß4. To investigate whether the other Cavß subunits, like Cavß3, can desensitize cells to IP3 and thereby modulate Ca2+ signaling, we expressed the cDNAs of Cavß1, Cavß2, Cavß3, and Cavß4 in COS-7 cells lacking endogenous Cavß proteins. ATP stimulation of these cells results in the release of Ca2+ from intracellular stores. This receptor-mediated Ca2+ release is significantly decreased by Cavß3 but not by Cavß1, Cavß2, and Cavß4. Electrophysiological recordings of voltage-dependent Ca2+ currents from fibroblasts show a small Ca2+ current, the amplitude of which is slightly but not significantly smaller in fibroblasts from Cavß2 gene-deficient animals than in fibroblasts from wild-type animals. Compared with fibroblasts from wild-type animals, Ca2+ release is not significantly increased in Cavß2-deficient fibroblasts, in contrast to Ca2+ release in Cavß3-deficient fibroblasts. In summary, our results show that desensitization of cells to low concentrations of IP3 is a specific property of Cavß3 that is not shared by other Cavß subunits.


Assuntos
Canais de Cálcio , Células Secretoras de Insulina , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Fibroblastos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo
17.
Data Brief ; 42: 108201, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35516004

RESUMO

To identify TRPV6 expression in the whole mouse with a cellular resolution we took advantage of TRPV6-IRES-Cre knock-in mice crossed with the enhanced ROSA26-τGFP reporter line. In the resulting TRPV6-IC/eR26-τGFP animals, TRPV6-expressing cells are labeled with τGFP. Data were collected from organs prepared from fixed experimental adult and juvenile TRPV6-IC/eR26τGFP and Cre-negative eR26-τGFP control animals of both sexes. Organ cryosections from each age and sex were stained for GFP and imaged with a slide scanner. Here, we describe reporter gene expression in a large number of tissues. We also document the absence of τGFP signal in the corresponding Cre-negative control tissues, including controls for the TRPV6 expression data described in [1]. The data reported here and in [1] constitute the TRPV6 expression atlas for the mouse. Our data offer a wealth of information to enable investigation of the functional role of TRPV6 channels in different tissues.

18.
MethodsX ; 9: 101604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569450

RESUMO

Transient receptor potential (TRP) ion channels play important roles in fundamental biological processes throughout the body of humans and mice. TRP channel dysfunction manifests in different disease states, therefore, these channels may represent promising therapeutic targets in treating these conditions. Many TRP channels are expressed in several organs suggesting multiple functions and making it challenging to untangle the systemic pathophysiology of TRP dysfunction. Detailed characterization of the expression pattern of the individual TRP channels throughout the organism is thus essential to interpret data such as those derived from systemic phenotyping of global TRP knockout mice. Murine TRP channel reporter strains enable reliable labeling of TRP expression with a fluorescent marker. Here we present an optimized method to visualize primary TRP-expressing cells with single cell resolution throughout the entire organism. In parallel, we methodically combine systemic gene expression profiling with an adjusted mass spectrometry protocol to document acute protein levels in selected organs of interest. The TRP protein expression data are then correlated with the GFP reporter expression data. The combined methodological approach presented here can be adopted to generate expression data for other genes of interest and reporter mice.•We present an optimized method to systemically characterize gene expression in fluorescent reporter mouse strains with a single cell resolution.•We methodically combine systemic gene expression profiling with an adjusted mass spectrometry protocol to document acute protein levels in selected organs of interest in mice.

19.
Cell Calcium ; 100: 102481, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628109

RESUMO

The transient receptor potential vanilloid 6 (TRPV6) channel is highly Ca2+-selective and has been implicated in mediating transcellular Ca2+ transport and thus maintaining the Ca2+ balance in the body. To characterize its physiological function(s), a detailed expression profile of the TRPV6 channel throughout the body is essential. Capitalizing on a recently established murine Trpv6-reporter strain, we identified primary TRPV6 channel-expressing cells in an organism-wide manner. In a complementary experimental approach, we characterized TRPV6 expression in different tissues of wild-type mice by TRPV6 immunoprecipitation (IP) followed by mass spectrometry analysis and correlated these data with the reporter gene expression. Taken together, we present a TRPV6 expression atlas throughout the entire body of juvenile and adult mice, providing a novel resource to investigate the role of TRPV6 channels in vivo.


Assuntos
Canais de Cálcio , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Expressão Gênica , Camundongos , Canais de Cátion TRPV/genética
20.
Cell Rep ; 37(3): 109851, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686339

RESUMO

Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.


Assuntos
Cálcio/metabolismo , Adesão Celular , Proliferação de Células , Magnésio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Canais de Cátion TRPM/deficiência , Trofoblastos/metabolismo , Animais , Morte Celular , Linhagem da Célula , Células Cultivadas , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/patologia , Transdução de Sinais , Canais de Cátion TRPM/genética , Trofoblastos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA