Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(5): e30, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34908135

RESUMO

The use of complex biological molecules to solve computational problems is an emerging field at the interface between biology and computer science. There are two main categories in which biological molecules, especially DNA, are investigated as alternatives to silicon-based computer technologies. One is to use DNA as a storage medium, and the other is to use DNA for computing. Both strategies come with certain constraints. In the current study, we present a novel approach derived from chaos game representation for DNA to generate DNA code words that fulfill user-defined constraints, namely GC content, homopolymers, and undesired motifs, and thus, can be used to build codes for reliable DNA storage systems.


Assuntos
Biologia Computacional/métodos , DNA , Fractais
2.
Bioinformatics ; 36(11): 3322-3326, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129840

RESUMO

SUMMARY: The development of de novo DNA synthesis, polymerase chain reaction (PCR), DNA sequencing and molecular cloning gave researchers unprecedented control over DNA and DNA-mediated processes. To reduce the error probabilities of these techniques, DNA composition has to adhere to method-dependent restrictions. To comply with such restrictions, a synthetic DNA fragment is often adjusted manually or by using custom-made scripts. In this article, we present MESA (Mosla Error Simulator), a web application for the assessment of DNA fragments based on limitations of DNA synthesis, amplification, cloning, sequencing methods and biological restrictions of host organisms. Furthermore, MESA can be used to simulate errors during synthesis, PCR, storage and sequencing processes. AVAILABILITY AND IMPLEMENTATION: MESA is available at mesa.mosla.de, with the source code available at github.com/umr-ds/mesa_dna_sim. CONTACT: dominik.heider@uni-marburg.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
DNA , Software , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
3.
BMC Bioinformatics ; 21(1): 526, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198651

RESUMO

BACKGROUND: Sequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires efficient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an efficient workflow management system. RESULTS: We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub ( https://github.com/MW55/Natrix ) or as a Docker container on DockerHub ( https://hub.docker.com/r/mw55/natrix ). CONCLUSION: Natrix is a user-friendly and highly extensible workflow for processing Illumina amplicon data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Fluxo de Trabalho , Análise por Conglomerados , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Análise de Dados , Bases de Dados Genéticas , Inundações , Microbiota/genética , Reprodutibilidade dos Testes
4.
iScience ; 27(5): 109575, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638577

RESUMO

DNA, with its high storage density and long-term stability, is a potential candidate for a next-generation storage device. The DNA data storage channel, composed of synthesis, amplification, storage, and sequencing, exhibits error probabilities and error profiles specific to the components of the channel. Here, we present Autoturbo-DNA, a PyTorch framework for training error-correcting, overcomplete autoencoders specifically tailored for the DNA data storage channel. It allows training different architecture combinations and using a wide variety of channel component models for noise generation during training. It further supports training the encoder to generate DNA sequences that adhere to user-defined constraints. Autoturbo-DNA exhibits error-correction capabilities close to non-neural-network state-of-the-art error correction and constrained codes for DNA data storage. Our results indicate that neural-network-based codes can be a viable alternative to traditionally designed codes for the DNA data storage channel.

5.
Comput Struct Biotechnol J ; 21: 1448-1460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36851917

RESUMO

In an ever-growing need for data storage capacity, the Deoxyribonucleic Acid (DNA) molecule gains traction as a new storage medium with a larger capacity, higher density, and a longer lifespan over conventional storage media. To effectively use DNA for data storage, it is important to understand the different methods of encoding information in DNA and compare their effectiveness. This requires evaluating which decoded DNA sequences carry the most encoded information based on various attributes. However, navigating the field of coding theory requires years of experience and domain expertise. For instance, domain experts rely on various mathematical functions and attributes to score and evaluate their encodings. To enable such analytical tasks, we provide an interactive and visual analytical framework for multi-attribute ranking in DNA storage systems. Our framework follows a three-step view with user-settable parameters. It enables users to find the optimal en-/de-coding approaches by setting different weights and combining multiple attributes. We assess the validity of our work through a task-specific user study on domain experts by relying on three tasks. Results indicate that all participants completed their tasks successfully under two minutes, then rated the framework for design choices, perceived usefulness, and intuitiveness. In addition, two real-world use cases are shared and analyzed as direct applications of the proposed tool. DNAsmart enables the ranking of decoded sequences based on multiple attributes. In sum, this work unveils the evaluation of en-/de-coding approaches accessible and tractable through visualization and interactivity to solve comparison and ranking tasks.

6.
Bioinform Adv ; 3(1): vbad117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38496344

RESUMO

Motivation: There has been rapid progress in the development of error-correcting and constrained codes for DNA storage systems in recent years. However, improving the steps for processing raw sequencing data for DNA storage has a lot of untapped potential for further progress. In particular, constraints can be used as prior information to improve the processing of DNA sequencing data. Furthermore, a workflow tailored to DNA storage codes enables fair comparisons between different approaches while leading to reproducible results. Results: We present RepairNatrix, a read-processing workflow for DNA storage. RepairNatrix supports preprocessing of raw sequencing data for DNA storage applications and can be used to flag and heuristically repair constraint-violating sequences to further increase the recoverability of encoded data in the presence of errors. Compared to a preprocessing strategy without repair functionality, RepairNatrix reduced the number of raw reads required for the successful, error-free decoding of the input files by a factor of 25-35 across different datasets. Availability and implementation: RepairNatrix is available on Github: https://github.com/umr-ds/repairnatrix.

7.
Nat Commun ; 14(1): 628, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746948

RESUMO

The extensive information capacity of DNA, coupled with decreasing costs for DNA synthesis and sequencing, makes DNA an attractive alternative to traditional data storage. The processes of writing, storing, and reading DNA exhibit specific error profiles and constraints DNA sequences have to adhere to. We present DNA-Aeon, a concatenated coding scheme for DNA data storage. It supports the generation of variable-sized encoded sequences with a user-defined Guanine-Cytosine (GC) content, homopolymer length limitation, and the avoidance of undesired motifs. It further enables users to provide custom codebooks adhering to further constraints. DNA-Aeon can correct substitution errors, insertions, deletions, and the loss of whole DNA strands. Comparisons with other codes show better error-correction capabilities of DNA-Aeon at similar redundancy levels with decreased DNA synthesis costs. In-vitro tests indicate high reliability of DNA-Aeon even in the case of skewed sequencing read distributions and high read-dropout.


Assuntos
Replicação do DNA , DNA , Reprodutibilidade dos Testes , DNA/genética , Análise de Sequência de DNA , Algoritmos
8.
Front Genet ; 14: 1213829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564874

RESUMO

Next-generation sequencing has revolutionized the field of microbiology research and greatly expanded our knowledge of complex bacterial communities. Nanopore sequencing provides distinct advantages, combining cost-effectiveness, ease of use, high throughput, and high taxonomic resolution through its ability to process long amplicons, such as the entire 16s rRNA genome. We examine the performance of the conventional 27F primer (27F-I) included in the 16S Barcoding Kit distributed by Oxford Nanopore Technologies (ONT) and that of a more degenerate 27F primer (27F-II) in the context of highly complex bacterial communities in 73 human fecal samples. The results show striking differences in both taxonomic diversity and relative abundance of a substantial number of taxa between the two primer sets. Primer 27F-I reveals a significantly lower biodiversity and, for example, at the taxonomic level of the phyla, a dominance of Firmicutes and Proteobacteria as determined by relative abundances, as well as an unusually high ratio of Firmicutes/Bacteriodetes when compared to the more degenerate primer set (27F-II). Considering the findings in the context of the gut microbiomes common in Western industrial societies, as reported in the American Gut Project, the more degenerate primer set (27F-II) reflects the composition and diversity of the fecal microbiome significantly better than the 27F-I primer. This study provides a fundamentally relevant comparative analysis of the in situ performance of two primer sets designed for sequencing of the entire 16s rRNA genome and suggests that the more degenerate primer set (27F-II) should be preferred for nanopore sequencing-based analyses of the human fecal microbiome.

9.
NAR Genom Bioinform ; 4(1): lqab126, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156022

RESUMO

Due to the rapid cost decline of synthesizing and sequencing deoxyribonucleic acid (DNA), high information density, and its durability of up to centuries, utilizing DNA as an information storage medium has received the attention of many scientists. State-of-the-art DNA storage systems exploit the high capacity of DNA and enable random access (predominantly random reads) by primers, which serve as unique identifiers for directly accessing data. However, primers come with a significant limitation regarding the maximum available number per DNA library. The number of different primers within a library is typically very small (e.g. ≈10). We propose a method to overcome this deficiency and present a general-purpose technique for addressing and directly accessing thousands to potentially millions of different data objects within the same DNA pool. Our approach utilizes a fountain code, sophisticated probe design, and microarray technologies. A key component is locality-sensitive hashing, making checks for dissimilarity among such a large number of probes and data objects feasible.

10.
iScience ; 23(7): 101297, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32619700

RESUMO

Since the outbreak in 2019, researchers are trying to find effective drugs against the SARS-CoV-2 virus based on de novo drug design and drug repurposing. The former approach is very time consuming and needs extensive testing in humans, whereas drug repurposing is more promising, as the drugs have already been tested for side effects, etc. At present, there is no treatment for COVID-19 that is clinically effective, but there is a huge amount of data from studies that analyze potential drugs. We developed CORDITE to efficiently combine state-of-the-art knowledge on potential drugs and make it accessible to scientists and clinicians. The web interface also provides access to an easy-to-use API that allows a wide use for other software and applications, e.g., for meta-analysis, design of new clinical studies, or simple literature search. CORDITE is currently empowering many scientists across all continents and accelerates research in the knowledge domains of virology and drug design.

11.
J Nephrol ; 33(4): 817-827, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144645

RESUMO

Patients with end-stage renal disease (ESRD) suffer from a progressively increasing low-grade systemic inflammation, which is associated with higher morbidity and mortality. Regulatory T cells (Tregs) play an important role in regulation of the inflammatory process. Previously, it has been demonstrated that short-chain fatty acids reduce inflammation in the central nervous system in a murine model of multiple sclerosis through an increase in tissue infiltrating Tregs. Here, we evaluated the effect of the short-chain fatty acid propionate on the chronic inflammatory state and T-cell composition in ESRD patients. Analyzing ESRD patients and healthy blood donors before, during, and 60 days after the propionate supplementation by multiparametric flow cytometry we observed a gradual and significant expansion in the frequencies of CD25highCD127- Tregs in both groups. Phenotypic characterization suggests that polarization of naïve T cells towards Tregs is responsible for the observed expansion. In line with this, we observed a significant reduction of inflammatory marker CRP under propionate supplementation. Of interest, the observed anti-inflammatory surroundings did not affect the protective pathogen-specific immunity as demonstrated by the stable frequencies of effector/memory T cells specific for tetanus/diphtheria recall antigens. Collectively, our data suggest that dietary supplements with propionate have a beneficial effect on the elevated systemic inflammation of ESRD patients. The effect can be achieved through an expansion of circulating Tregs without affecting the protective pathogen-reactive immunity.


Assuntos
Falência Renal Crônica , Propionatos , Linfócitos T Reguladores , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Suplementos Nutricionais , Feminino , Citometria de Fluxo , Humanos , Falência Renal Crônica/imunologia , Masculino , Pessoa de Meia-Idade , Propionatos/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA