Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441500

RESUMO

In this Perspective, Journal of Cell Science invited researchers working on cell and tissue polarity to share their thoughts on unique, emerging or open questions relating to their field. The goal of this article is to feature 'voices' from scientists around the world and at various career stages, to bring attention to innovative and thought-provoking topics of interest to the cell biology community. These voices discuss intriguing questions that consider polarity across scales, evolution, development and disease. What can yeast and protists tell us about the evolution of cell and tissue polarity in animals? How are cell fate and development influenced by emerging dynamics in cell polarity? What can we learn from atypical and extreme polarity systems? How can we arrive at a more unified biophysical understanding of polarity? Taken together, these pieces demonstrate the broad relevance of the fascinating phenomenon of cell polarization to diverse fundamental biological questions.


Assuntos
Polaridade Celular , Pesquisadores , Animais , Humanos , Biofísica , Diferenciação Celular , Saccharomyces cerevisiae
2.
Cell ; 145(7): 1088-101, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21703451

RESUMO

INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in the reduced state by raising the redox potential of its Cys606/Cys645 disulfide bond by ∼330 mV. Acidification, potentially mediated via light and PLCß-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Olho/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Olho/metabolismo , Proteínas do Olho/química , Modelos Moleculares , Oxirredução , Domínios PDZ , Células Fotorreceptoras de Invertebrados/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 120(33): e2302478120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549262

RESUMO

Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Retroalimentação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
4.
Cell ; 138(3): 537-48, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665975

RESUMO

Myosin VI is the only known molecular motor that moves toward the minus ends of actin filaments; thus, it plays unique roles in diverse cellular processes. The processive walking of myosin VI on actin filaments requires dimerization of the motor, but the protein can also function as a nonprocessive monomer. The molecular mechanism governing the monomer-dimer conversion is not clear. We report the high-resolution NMR structure of the cargo-free myosin VI cargo-binding domain (CBD) and show that it is a stable monomer in solution. The myosin VI CBD binds to a fragment of the clathrin-coated vesicle adaptor Dab2 with a high affinity, and the X-ray structure of the myosin VI CBD in complex with Dab2 reveals that the motor undergoes a cargo-binding-mediated dimerization. The cargo-binding-induced dimerization may represent a general paradigm for the regulation of processivity for myosin VI as well as other myosins, including myosin VII and myosin X.


Assuntos
Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Vesículas Revestidas por Clatrina/metabolismo , Cristalografia por Raios X , Dimerização , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Alinhamento de Sequência
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723042

RESUMO

Ykt6 is a soluble N-ethylmaleimide sensitive factor activating protein receptor (SNARE) critically involved in diverse vesicular fusion pathways. While most SNAREs rely on transmembrane domains for their activity, Ykt6 dynamically cycles between the cytosol and membrane-bound compartments where it is active. The mechanism that regulates these transitions and allows Ykt6 to achieve specificity toward vesicular pathways is unknown. Using a Parkinson's disease (PD) model, we found that Ykt6 is phosphorylated at an evolutionarily conserved site which is regulated by Ca2+ signaling. Through a multidisciplinary approach, we show that phosphorylation triggers a conformational change that allows Ykt6 to switch from a closed cytosolic to an open membrane-bound form. In the phosphorylated open form, the spectrum of protein interactions changes, leading to defects in both the secretory and autophagy pathways, enhancing toxicity in PD models. Our studies reveal a mechanism by which Ykt6 conformation and activity are regulated with potential implications for PD.


Assuntos
Sequência Conservada , Modelos Moleculares , Conformação Proteica , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Aminoácidos , Autofagia , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Evolução Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas R-SNARE/genética , Relação Estrutura-Atividade
6.
Cell Mol Neurobiol ; 43(6): 2975-2987, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37081231

RESUMO

Gliomas are aggressive brain tumors characterized by uncontrolled cell proliferation. FAM64A, a cell cycle-related gene, has been found to promote cell proliferation in various tumors, including gliomas. However, the regulatory mechanism and clinical significance of FAM64A in gliomas remain unclear. In this study, we investigated FAM64A expression in gliomas with different grades and constructed FAM64A silenced cell lines to study its functions. Our results demonstrated that FAM64A was highly expressed in glioblastoma (P < 0.001) and associated with a poor prognosis (P < 0.001). Expression profiles at the single-cell resolution indicated FAM64A could play a role in a cell-cycle-dependent way to promote glioma cell proliferation. We further observed that FAM64A silencing in glioma cells resulted in disrupted proliferation and migration ability, and increased cell accumulation in the G2/M phase (P = 0.034). Additionally, TGF-ß signaling upregulates FAM64A expression, and SMAD4 and FAM64A co-localize in high-grade glioma tissues. We found FAM64A knockdown inhibited TGF-ß-induced epithelial-mesenchymal transition in glioma. Our findings suggest that FAM64A could serve as a diagnostic and therapeutic target in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/patologia , Neoplasias Encefálicas/patologia , Ciclo Celular/genética , Proliferação de Células/genética , Divisão Celular , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1042-1051, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249333

RESUMO

As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.


Assuntos
Centrossomo , Proteínas , Proteínas/metabolismo , Centrossomo/metabolismo , Organelas/química , Organelas/metabolismo , Divisão Celular
9.
Biochemistry ; 60(36): 2677-2684, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34379397

RESUMO

Cells are biochemically and morphologically polarized, which allows them to produce different cell shapes for various functions. Remarkably, some polarity protein complexes are asymmetrically recruited and concentrated on limited membrane regions, which is essential for the establishment and maintenance of diverse cell polarity. Though the components and mutual interactions within these protein complexes have been extensively investigated, how these proteins autonomously concentrate at local membranes and whether they have the same organization mechanism in the condensed assembly as that in aqueous solution remain elusive. A number of recent studies suggest that these highly concentrated polarity protein assemblies are membraneless biomolecular condensates which form through liquid-liquid phase separation (LLPS) of specific proteins. In this perspective, we summarize the LLPS-driven condensed protein assemblies found in asymmetric cell division, epithelial cell polarity, and neuronal synapse formation and function. These findings suggest that LLPS may be a general strategy for cells to achieve local condensation of specific proteins, thus establishing cell polarity.


Assuntos
Neurogênese/fisiologia , Neurônios/fisiologia , Organelas/metabolismo , Proteínas/metabolismo , Divisão Celular Assimétrica , Polaridade Celular , Humanos , Neurônios/citologia , Transição de Fase
10.
BMC Cancer ; 21(1): 83, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472598

RESUMO

BACKGROUND: Non-invasive diagnosis of IDH1 mutation for gliomas has great clinical significance, and PET has natural advantage to detect metabolism, as IDH mutated gliomas share lower glucose consumption. METHODS: Clinical data of patients with gliomas and 18F-FDG PET were retrospectively reviewed. Receiver operating characteristic curve (ROC) analysis was conducted, and standard uptake value (SUV) was estimated in combination with grades or IDH1 mutation. The glucose consumption was investigated with U251 cells expressing wild-type or mutated IDH1 by glucose assay. Quantification of glucose was determined by HPLC in clinical tissues. Meanwhile, bioinformatics and western blot were applied to analyze the expression level of metabolic enzymes (e.g. HK1, PKM2, PC) in gliomas. RESULTS: Seventy-one glioma cases were enrolled, including 30 carrying IDH1 mutation. The sensitivity and specificity dependent on SUVmax (3.85) predicting IDH1 mutation reached 73.2 and 86.7%, respectively. The sensitivity and specificity of differentiating grades by SUVmax (3.1) were 92.3 and 64.4%, respectively. Glucose consumption of U251 IDH1 mutant cells (0.209 ± 0.0472 mg/ml) was obviously lower than IDH1wild-type cells (0.978 ± 0.0773 mg/ml, P = 0.0001) and astrocyte controls (0.335 ± 0.0592 mg/ml, P = 0.0451). Meanwhile, the glucose quantity in IDH1mutant glioma samples were significantly lower than those in IDH1 wild-type tissues (1.033 ± 1.19608 vs 6.361 ± 4.3909 mg/g, P = 0.0051). Silico analysis and western blot confirmed that HK1 and PKM2 in IDH1 wild-type gliomas were significantly higher than in IDH1 mutant group, while PC was significantly higher in IDH1 mutant gliomas. CONCLUSION: SUVmax on PET can predict IDH1 mutation with adequate sensitivity and specificity, as is supported by reduced glucose consumption in IDH1 mutant gliomas.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Glucose/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Estudos de Casos e Controles , Fluordesoxiglucose F18/metabolismo , Seguimentos , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Humanos , Prognóstico , Curva ROC , Compostos Radiofarmacêuticos/metabolismo , Células Tumorais Cultivadas
11.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638607

RESUMO

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.


Assuntos
Divisão Celular Assimétrica/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Animais , Fenômenos Biomecânicos , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Tamanho Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Modelos Neurológicos , Miosinas/fisiologia , Neurogênese/fisiologia , Organelas/fisiologia
12.
Biochemistry ; 59(1): 47-56, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31617345

RESUMO

Asymmetric cell division (ACD) is a conserved strategy for achieving cell diversity. A cell can undergo an intrinsic ACD through asymmetric segregation of cell fate determinants or cellular organelles. Recently, a new biophysical concept known as biomolecular phase separation, through which proteins and/or RNAs autonomously form a highly concentrated non-membrane-enclosed compartment via multivalent interactions, has provided new insights into the assembly and regulation of many membrane-less or membrane-attached organelles. Intriguingly, biomolecular phase separation is suggested to drive asymmetric condensation of cell fate determinants during ACD as well as organization of cellular organelles involved in ACD. In this Perspective, I first summarize recent findings on the molecular basis governing intrinsic ACD. Then I will discuss how ACD might be regulated by formation of dense molecular assemblies via phase separation.


Assuntos
Divisão Celular Assimétrica/fisiologia , Proteínas/metabolismo , RNA/metabolismo , Animais , Caenorhabditis elegans , Drosophila melanogaster , Masculino , Organelas/metabolismo , Transição de Fase , Agregados Proteicos/fisiologia , Proteínas/química , RNA/química , Fuso Acromático/metabolismo
13.
J Biol Chem ; 293(43): 16697-16708, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30213861

RESUMO

The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif-containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip-Su(dx)-mediated Notch ubiquitination.


Assuntos
Proteínas de Drosophila/química , Drosophila/enzimologia , Ubiquitina-Proteína Ligases/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Domínios WW
14.
J Biol Chem ; 293(11): 4149-4158, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29382713

RESUMO

Traffic of cargo across membranes helps establish, maintain, and reorganize distinct cellular compartments and is fundamental to many metabolic processes. The cargo-selective endocytic adaptor Numb participates in clathrin-dependent endocytosis by attaching cargoes to the clathrin adaptor α-adaptin. The phosphorylation of Numb at Ser265 and Ser284 recruits the regulatory protein 14-3-3, accompanied by the dissociation of Numb from α-adaptin and Numb's translocation from the cortical membrane to the cytosol. However, the molecular mechanisms underlying the Numb-α-adaptin interaction and its regulation by Numb phosphorylation and 14-3-3 recruitment remain poorly understood. Here, biochemical and structural analyses of the Numb·14-3-3 complex revealed that Numb phosphorylation at both Ser265 and Ser284 is required for Numb's efficient interaction with 14-3-3. We also discovered that an RQFRF motif surrounding Ser265 in Numb functions together with the canonical C-terminal DPF motif, required for Numb's interaction with α-adaptin, to form a stable complex with α-adaptin. Of note, we provide evidence that the phosphorylation-induced binding of 14-3-3 to Numb directly competes with the binding of α-adaptin to Numb. Our findings suggest a potential mechanism governing the dynamic assembly of Numb with α-adaptin or 14-3-3. This dual-site recognition of Numb by α-adaptin may have implications for other α-adaptin targets. We propose that the newly identified α-adaptin-binding site surrounding Ser265 in Numb functions as a triggering mechanism for the dynamic dissociation of the Numb·α-adaptin complex.


Assuntos
Proteínas 14-3-3/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas 14-3-3/química , Subunidades alfa do Complexo de Proteínas Adaptadoras/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
15.
Proteins ; 87(8): 706-710, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30958583

RESUMO

Drosophila brain tumor (Brat) is a translational repressor belonging to the tripartite motif (TRIM) protein superfamily. During the asymmetric division of Drosophila neuroblasts, Brat localizes at the basal cortex via direct interaction with the scaffolding protein Miranda (Mira), and segregates into the basal ganglion mother cells after cell division. It was previously reported that both the coiled-coil (CC) and NHL domains of Brat are required for the interaction with Mira, but the underlying structural basis is elusive. Here, we determine the crystal structure of Brat-CC domain (aa 376-511) at 2.5 Å, showing that Brat-CC forms an elongated antiparallel dimer through an unconventional CC structure. The dimeric assembly in Brat-CC structure is similar to its counterparts in other TRIM proteins, but Brat-CC also exhibits some distinct structural features. We also demonstrate that the CC domain could not bind Mira by its own, neither does the isolated NHL domain of Brat. Rather, Brat binds to Mira through the CC-NHL domain tandem, indicating that the function of the CC domain is to assemble Brat-NHL in dimeric form, which is necessary for Mira binding.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Animais , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos
16.
EMBO Rep ; 18(9): 1618-1630, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28747490

RESUMO

The Nedd4 family E3 ligases are key regulators of cell growth and proliferation and are often misregulated in human cancers and other diseases. The ligase activities of Nedd4 E3s are tightly controlled via auto-inhibition. However, the molecular mechanism underlying Nedd4 E3 auto-inhibition and activation is poorly understood. Here, we show that the WW domains proceeding the catalytic HECT domain play an inhibitory role by binding directly to HECT in the Nedd4 E3 family member Itch. Our structural and biochemical analyses of Itch reveal that the WW2 domain and a following linker allosterically lock HECT in an inactive state inhibiting E2-E3 transthiolation. Binding of the Ndfip1 adaptor or JNK1-mediated phosphorylation relieves the auto-inhibition of Itch in a WW2-dependent manner. Aberrant activation of Itch leads to migration defects of cortical neurons during development. Our study provides a new mechanism governing the regulation of Itch.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Animais , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Domínios WW
17.
Mol Cell ; 43(3): 418-31, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21816348

RESUMO

Asymmetric cell division requires the establishment of cortical cell polarity and the orientation of the mitotic spindle along the axis of cell polarity. Evidence from invertebrates demonstrates that the Par3/Par6/aPKC and NuMA/LGN/Gαi complexes, which are thought to be physically linked by the adaptor protein mInscuteable (mInsc), play indispensable roles in this process. However, the molecular basis for the binding of LGN to NuMA and mInsc is poorly understood. The high-resolution structures of the LGN/NuMA and LGN/mInsc complexes presented here provide mechanistic insights into the distinct and highly specific interactions of the LGN TPRs with mInsc and NuMA. Structural comparisons, together with biochemical and cell biology studies, demonstrate that the interactions of NuMA and mInsc with LGN are mutually exclusive, with mInsc binding preferentially. Our results suggest that the Par3/mInsc/LGN and NuMA/LGN/Gαi complexes play sequential and partially overlapping roles in asymmetric cell division.


Assuntos
Antígenos Nucleares/química , Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Divisão Celular/fisiologia , Proteínas Associadas à Matriz Nuclear/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular , Cristalografia por Raios X , Escherichia coli/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Humanos , Camundongos , Modelos Moleculares , Mutagênese , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico , Fuso Acromático/metabolismo
18.
Mol Cell ; 37(3): 383-95, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159557

RESUMO

While most SNAREs are permanently anchored to membranes by their transmembrane domains, the dually lipidated SNARE Ykt6 is found both on intracellular membranes and in the cytosol. The cytosolic Ykt6 is inactive due to the autoinhibition of the SNARE core by its longin domain, although the molecular basis of this inhibition is unknown. Here, we demonstrate that unlipidated Ykt6 adopts multiple conformations, with a small population in the closed state. The structure of Ykt6 in complex with a fatty acid suggests that, upon farnesylation, the Ykt6 SNARE core forms four alpha helices that wrap around the longin domain, forming a dominantly closed conformation. The fatty acid, buried in a hydrophobic groove formed between the longin domain and its SNARE core, is essential for maintaining the autoinhibited conformation of Ykt6. Our study reveals that the posttranslationally attached farnesyl group can actively regulate Ykt6 fusion activity in addition to its anticipated membrane-anchoring role.


Assuntos
Proteínas R-SNARE/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Citosol/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Prenilação , Estrutura Terciária de Proteína , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/fisiologia , Ratos , Alinhamento de Sequência
19.
Mol Cell ; 33(6): 692-703, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19328064

RESUMO

The cytoplasmic domains of UNC5 are responsible for its netrin-mediated signaling events in axonal migrations, blood vessel patterning, and apoptosis, although the molecular mechanisms governing these processes are unknown. To provide a foundation for the elucidation of the UNC5-mediated signaling mechanism, we determined the crystal structure of the cytoplasmic portion of UNC5b. We found that it contains three distinctly folded domains, namely ZU5, UPA, and death domain (DD). These three domains form a structural supramodule, with ZU5 binding to both UPA and DD, thereby locking the ZU5-UPA-DD supramodule in a closed conformation and suppressing its biological activities. Release of the closed conformation of the ZU5-UPA-DD supramodule leads to the activation of the receptor in the promotion of apoptosis and blood vessel patterning. Finally, we provide evidence showing that the supramodular nature of UNC5 ZU5-UPA-DD is likely to be shared by the ankyrin and PIDD families of scaffold proteins.


Assuntos
Apoptose/fisiologia , Citoplasma/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Animais , Células Cultivadas , Cromatografia de Afinidade , Cristalografia por Raios X , Imunofluorescência , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Fenótipo , Ligação Proteica , Conformação Proteica , Ratos , Receptores de Superfície Celular/genética , Transdução de Sinais , Transfecção , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
20.
EMBO J ; 30(24): 4986-97, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22117215

RESUMO

Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.


Assuntos
Guanilato Quinases/química , Fosfoproteínas/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Proteína 1 Homóloga a Discs-Large , Guanilato Quinases/genética , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Fosfoproteínas/genética , Conformação Proteica , Estrutura Terciária de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA