Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Interv Cardiol ; 2023: 2438347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720628

RESUMO

At present, there is a lack of indicators, which can accurately predict the post-percutaneous coronary intervention (post-PCI) vessel-oriented composite endpoint (VOCE). Recent studies showed that the post-PCI quantitative flow ratio (QFR) can predict post-PCI VOCE. PubMed, Embase, and Cochrane were searched from inception to March 27, 2022, and the cohort studies about that the post-PCI QFR predicts post-PCI VOCE were screened. Meta-analysis was performed, including 6 studies involving 4518 target vessels. The results of the studies included in this meta-analysis all showed that low post-PCI QFR was an independent risk factor for post-PCI VOCE after adjusting for other factors, HR (95% CI) ranging from 2.718 (1.347-5.486) to 6.53 (2.70-15.8). Our meta-analysis showed that the risk of post-PCI VOCE was significantly higher in the lower post-PCI QFR group than in the higher post-PCI QFR group (HR: 4.14, 95% CI: 3.00-5.70, P < 0.001, I2 = 27.9%). Post-PCI QFR has a good predictive value for post-PCI VOCE. Trial Registration. This trial is registered with CRD42022322001.


Assuntos
Intervenção Coronária Percutânea , Humanos , Fatores de Risco
2.
Sci Total Environ ; 753: 142011, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32890881

RESUMO

Reactive nitrogen (Nr) input often induces soil acidification, which may in turn affect bacterial and fungal nitrogen (N) transformations in soil and nitrous oxide (N2O) emissions. However, the interactive effects of soil acidity and Nr on the contributions of bacteria and fungi to N2O emissions remain unclear. We conducted a field experiment to assess the effects of anthropogenic Nr forms (i.e., synthetic N fertilizer and manure) on bacterial and fungal N2O emissions along a soil acidity gradient (soil pH = 6.8, 6.1, 5.2, and 4.2). The abundances and structure of bacterial and fungal communities were analyzed by real-time polymerase chain reaction and high-throughput sequencing techniques, respectively. Soil acidification reduced bacterial but increased fungal contributions to N2O production, corresponding respectively to changes in bacterial and fungal abundance. It also altered bacterial and fungal community structures and soil chemical properties, such as dissolved organic carbon and ammonia concentrations. Structural equation modeling (SEM) analyses showed that the soil properties and fungal community were the most important factors determining bacterial and fungal contributions to N2O emissions, respectively. The fertilizer form markedly affected N2O emissions from bacteria but not from fungi. Compared with synthetic N fertilizer, manure significantly lowered the bacterial contribution to N2O emissions in the soils with pH of 5.2 and 4.2. The manure application significantly increased soil pH but reduced nitrate concentration. The fertilizer form did not significantly alter the bacterial and fungal community structures. The SEM revealed that the fertilizer form affected the bacterial contribution to N2O production by changing the soil chemical properties. Together, these results indicated that soil acidification enhanced fungal dominance for N2O emission, and manure application has limited effects on fungal N2O emission, highlighting the challenges for mitigation of soil N2O emissions under future acid deposition and N enrichment scenarios.


Assuntos
Fertilizantes , Esterco , Agricultura , Bactérias/genética , Fungos , Nitrogênio , Óxido Nitroso/análise , Solo
3.
Environ Sci Pollut Res Int ; 28(23): 29332-29343, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559074

RESUMO

Nitrite oxidation as the second step of nitrification can become the determining step in disturbed soil systems. As a beneficial fertilization practice to maintain high crop yield and soil fertility, partial substitution of chemical fertilizer (CF) by organic fertilizer (OF) may exert a notable disturbance to soil systems. However, how nitrite oxidation responds to different proportions of CF to OF is still unclear. We sampled soils from a 4-year field experiment subject to a gradient of increasing proportions of OF to CF application. Activity, size, and structure of Nitrospira-like and Nitrobacter-like nitrite-oxidizing bacteria (NOB) community were measured. The results revealed that with increasing proportion of OF to CF application, potential nitrite oxidation activity (PNO) showed a marked decreasing trend. PNO was significantly correlated with the abundance of Nitrobacter-like but not Nitrospira-like NOB. The abundance of Nitrobacter-like was significantly influenced by soil organic matter, organic nitrogen (N), and available N. In addition, PNO was also affected by the structure of Nitrobacter-like NOB. The relative abundance of Nitrobacter hamburgensis, alkalicus, winogradskyi, and vulgaris responded differently to the proportions of OF to CF application. Organic N, organic matter, and available N were the main factor shaping their community structure. Overall, Nitrobacter-like NOB is more sensitive and plays a more important role than Nitrospira-like NOB in responding to different proportions of OF to CF application.


Assuntos
Fertilizantes , Nitritos , Amônia , Bactérias , Nitrificação , Nitrobacter , Oxirredução , Microbiologia do Solo
4.
J Infect Dev Ctries ; 11(4): 287-293, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28459219

RESUMO

INTRODUCTION: Early and accurate diagnosis of imported malaria cases in clusters is crucial for protecting the health of patients and local populations, especially confirmed parasitic persons who are asymptomatic. METHODOLOGY: A total of 226 gold miners who had stayed in highly endemic areas of Ghana for more than six months and returned in clusters were selected randomly. Blood samples from them were tested with microscopy, nest polymerase chain reaction, and rapid diagnostic test (RDT). The sensitivity, specificity, predictive values, agreement rate, and Youden's index of each of three diagnostic methods were calculated and compared with the defined gold standard. A quick and efficient way to respond to screening such a clustered mobile population was predicted and analyzed by evaluating two assumed results of combining microscopy and RDT with or without symptoms of illness. RESULTS: The rate of the carriers of malaria parasites in the populations of gold miners was 19.47%, including 39 P. falciparum. Among the three diagnostic methods, the microscopy method showed the highest specificity, while the RDT method showed the highest sensitivity but the lowest specificity in detecting P. falciparum. The assumed results of combining RDT and microscopy with symptoms showed the best results among all the test results in screening P. falciparum. CONCLUSIONS: It was too complex and difficult to catch all parasite carriers in a short period of time among populations with such a complicated situation as that in Shanglin County. A strategy of combing microscopy and RDT for diagnosis is highly recommended.


Assuntos
Doenças Assintomáticas , Portador Sadio/diagnóstico , Doenças Transmissíveis Importadas/diagnóstico , Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Programas de Rastreamento/métodos , China , Cromatografia de Afinidade/métodos , Gana , Humanos , Microscopia/métodos , Reação em Cadeia da Polimerase/métodos , Valor Preditivo dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA