Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(20): 8724-8735, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717952

RESUMO

Building and protecting soil organic carbon (SOC) are critical to agricultural productivity, soil health, and climate change mitigation. We aim to understand how mechanisms at the organo-mineral interfaces influence SOC persistence in three contrasting soils (Luvisol, Vertisol, and Calcisol) under long-term free air CO2 enrichment conditions. A continuous wheat-field pea-canola rotation was maintained. For the first time, we provided evidence to a novel notion that persistent SOC is molecularly simple even under elevated CO2 conditions. We found that the elevated CO2 condition did not change the total SOC content or C forms compared with the soils under ambient CO2 as identified by synchrotron-based soft X-ray analyses. Furthermore, synchrotron-based infrared microspectroscopy confirmed a two-dimensional microscale distribution of similar and less diverse C forms in intact microaggregates under long-term elevated CO2 conditions. Strong correlations between the distribution of C forms and O-H groups of clays can explain the steady state of the total SOC content. However, the correlations between C forms and clay minerals were weakened in the coarse-textured Calcisol under long-term elevated CO2. Our findings suggested that we should emphasize identifying management practices that increase the physical protection of SOC instead of increasing complexity of C. Such information is valuable in developing more accurate C prediction models under elevated CO2 conditions and shift our thinking in developing management practices for maintaining and building SOC for better soil fertility and future environmental sustainability.


Assuntos
Dióxido de Carbono , Carbono , Solo , Dióxido de Carbono/química , Solo/química , Mudança Climática
2.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594827

RESUMO

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Carvão Vegetal
3.
Biomaterials ; 295: 122046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804661

RESUMO

ß-Glucosidase (ß-Glu) is a ubiquitous enzyme which has multiple roles in medical diagnosis, food production, agriculture, etc. Existing ß-Glu assays have limitations such as complex operation, long running time, and high background noise. Here we report a red-emissive probe TBPG for measuring the activity of ß-Glu. The probe was synthesized through conjugating a ß-Glu targeting glucoside to an aggregation-induced emission (AIE) fluorophore. In the presence of ß-Glu, TBPG was hydrolyzed and exhibited a fluorescence turn-on process. The detection conditions including time, temperature, pH value, buffer, and probe concentration were optimized systematically. Afterwards, fluorescence titration was conducted showing an excellent linearity (R2 = 0.998), a wide linear dynamic range (0-5.0 U/mL), and a limit of detection as low as 0.6 U/L. The detection specificity and ion interference were evaluated by adding various biological species and ions to probe without or with ß-Glu. Next, we demonstrate the applicability of probe TBPG in determining the ß-Glu activity in living cells using confocal microscopy and flow cytometry. Finally, this newly established assay was applied to real soil samples. Comparable results were obtained as the commercial assay, manifesting its great potential in soil enzyme analysis.


Assuntos
Celulases , Corantes Fluorescentes , Fluorescência , Íons , Solo , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA