Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1306038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449786

RESUMO

Background: Studies have linked autism spectrum disorder (ASD) to physiological abnormalities including mitochondrial dysfunction. Mitochondrial dysfunction may be linked to a subset of children with ASD who have neurodevelopmental regression (NDR). We have developed a cell model of ASD which demonstrates a unique mitochondrial profile with mitochondrial respiration higher than normal and sensitive to physiological stress. We have previously shown similar mitochondrial profiles in individuals with ASD and NDR. Methods: Twenty-six ASD individuals without a history of NDR (ASD-NoNDR) and 15 ASD individuals with a history of NDR (ASD-NDR) were recruited from 34 families. From these families, 30 mothers, 17 fathers and 5 typically developing (TD) siblings participated. Mitochondrial respiration was measured in peripheral blood mononuclear cells (PBMCs) with the Seahorse 96 XF Analyzer. PBMCs were exposed to various levels of physiological stress for 1 h prior to the assay using 2,3-dimethoxy-1,4-napthoquinone. Results: ASD-NDR children were found to have higher respiratory rates with mitochondria that were more sensitive to physiological stress as compared to ASD-NoNDR children, similar to our cellular model of NDR. Differences in mitochondrial respiration between ASD-NDR and TD siblings were similar to the differences between ASD-NDR and ASD-NoNDR children. Interesting, parents of children with ASD and NDR demonstrated patterns of mitochondrial respiration similar to their children such that parents of children with ASD and NDR demonstrated elevated respiratory rates with mitochondria that were more sensitive to physiological stress. In addition, sex differences were seen in ASD children and parents. Age effects in parents suggested that mitochondria of older parents were more sensitive to physiological stress. Conclusion: This study provides further evidence that children with ASD and NDR may have a unique type of mitochondrial physiology that may make them susceptible to physiological stressors. Identifying these children early in life before NDR occurs and providing treatment to protect mitochondrial physiology may protect children from experiencing NDR. The fact that parents also demonstrate mitochondrial respiration patterns similar to their children implies that this unique change in mitochondrial physiology may be a heritable factor (genetic or epigenetic), a result of shared environment, or both.

2.
J Pers Med ; 14(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248763

RESUMO

Autism spectrum disorder (ASD) affects up to 1 in 36 children in the United States. It is a heterogeneous neurodevelopmental disorder with life-long consequences. Patients with ASD and folate pathway abnormalities have demonstrated improved symptoms after treatment with leucovorin (folinic acid), a reduced form of folate. However, biomarkers for treatment response have not been well investigated and clinical trials are lacking. In this retrospective analysis, a cohort of prospectively collected data from 110 consecutive ASD clinic patients [mean (SD) age: 10.5 (6.2) years; 74% male] was examined. These patients all underwent testing for folate receptor alpha autoantibodies (FRAAs) and soluble folate binding proteins (sFBPs) biomarkers and were treated with leucovorin, if appropriate. Analyses examined whether these biomarkers could predict response to leucovorin treatment as well as the severity of ASD characteristics at baseline. The social responsiveness scale (SRS), a measure of core ASD symptoms, and the aberrant behavior checklist (ABC), a measure of disruptive behavior, were collected at each clinic visit. Those positive for sFBPs had more severe ASD symptoms, and higher binding FRAA titers were associated with greater ABC irritability. Treatment with leucovorin improved most SRS subscales with higher binding FRAA titers associated with greater response. Leucovorin treatment also improved ABC irritability. These results confirm and expand on previous studies, underscore the need for biomarkers to guide treatment of folate pathways in ASD, and suggest that leucovorin may be effective for children with ASD.

3.
Mol Diagn Ther ; 26(5): 483-495, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35759118

RESUMO

Autism spectrum disorder is an increasingly prevalent neurodevelopmental disorder in the world today, with an estimated 2% of the population being affected in the USA. A major complicating factor in diagnosing, treating, and understanding autism spectrum disorder is that defining the disorder is solely based on the observation of behavior. Thus, recent research has focused on identifying specific biological abnormalities in autism spectrum disorder that can provide clues to diagnosis and treatment. Biomarkers are an objective way to identify and measure biological abnormalities for diagnostic purposes as well as to measure changes resulting from treatment. This current opinion paper discusses the state of research of various biomarkers currently in development for autism spectrum disorder. The types of biomarkers identified include prenatal history, genetics, neurological including neuroimaging, neurophysiologic, and visual attention, metabolic including abnormalities in mitochondrial, folate, trans-methylation, and trans-sulfuration pathways, immune including autoantibodies and cytokine dysregulation, autonomic nervous system, and nutritional. Many of these biomarkers have promising preliminary evidence for prenatal and post-natal pre-symptomatic risk assessment, confirmation of diagnosis, subtyping, and treatment response. However, most biomarkers have not undergone validation studies and most studies do not investigate biomarkers with clinically relevant comparison groups. Although the field of biomarker research in autism spectrum disorder is promising, it appears that it is currently in the early stages of development.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/metabolismo , Biomarcadores/metabolismo , Citocinas , Humanos , Mitocôndrias/metabolismo
4.
Am J Transl Res ; 14(3): 1628-1639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422946

RESUMO

OBJECTIVES: Bioenergetic measurements in peripheral blood mononuclear cells (PBMCs) using high-throughput respirometry is a promising minimally invasive approach to studying mitochondrial function in humans. However, optimal methods for collecting PBMCs are not well studied. METHODS: Bioenergetics and viability were measured across processing delays, tube type and cryopreservation. RESULTS: Storage of collection tubes on dry ice resulted in unrecoverable samples and using the Cell Preparation Tube (CPTTM) significantly reduced viability. Thus, storage in Sodium Citrate (NaC) and ethylenediaminetetraacetic acid (EDTA) tubes were studied in detail. Cell viability decreased by 0.5% for each hour the samples remained on wet ice prior to processing while cryopreservation decreased viability by 9.6% with viability remaining stable for about one month in liquid nitrogen. Adenosine triphosphate linked respiration (ALR) and proton-leak respiration (PLR) changed minimally while maximal respiratory capacity (MRC) and reserve capacity (RC) decreased markedly with collection tubes stored on wet ice over 24 hrs. Changes in respiratory parameters were more modest over the first 8 hours. Manipulations to replace media did not attenuate changes in respiratory parameters. Cryopreservation decreased ALR, MRC and RC by 17.20, 95.30 and 54.92 pmol/min, respectively and increased PLR by 2.65 pmol/min. PLR, MRC and RC changed moderately during the first month in liquid nitrogen for freshly frozen PBMCs. CONCLUSIONS: Our results suggest that bioenergetics in PBMCs vary based on the processing time from specimen collection and preservation method. Changes in bioenergetics can be minimized by processing samples with a minimal time delay. Changes in viability are minimal and may not correspond to changes in bioenergetics.

5.
J Pers Med ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36556254

RESUMO

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with life-long consequences that affects up to 1 in 44 children. Treatment with leucovorin (folinic acid), a reduced form of folate, has been shown to improve symptoms in those with ASD and folate pathway abnormalities in controlled clinical trials. Although soluble folate binding proteins (sFBPs) have been observed in the serum of some patients with ASD, the significance of this finding has not been studied. Here, we present a cohort of ASD patients with sFBPs. These patients had severe ASD and were medically complex. Using baseline controlled open-label methodology and standardized assessments, these patients were found to improve in both core and associated ASD symptoms with leucovorin treatment. No adverse effects were related to leucovorin treatment. This is the first report of the sFBPs in ASD. This study complements ongoing controlled clinical trials and suggests that leucovorin may be effective for children with ASD who are positive for sFBPs. Further, sFBPs might be important biomarkers for treatment response to leucovorin in children with ASD. This study paves the way for further controlled studies for patients with sFBPs.

6.
Metabolites ; 12(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629876

RESUMO

Neurodevelopmental disorders are associated with metabolic pathway imbalances; however, most metabolic measurements are made peripherally, leaving central metabolic disturbances under-investigated. Cerebrospinal fluid obtained intraoperatively from children with autism spectrum disorder (ASD, n = 34), developmental delays (DD, n = 20), and those without known DD/ASD (n = 34) was analyzed using large-scale targeted mass spectrometry. Eighteen also had epilepsy (EPI). Metabolites significantly related to ASD, DD and EPI were identified by linear models and entered into metabolite-metabolite network pathway analysis. Common disrupted pathways were analyzed for each group of interest. Central metabolites most involved in metabolic pathways were L-cysteine, adenine, and dodecanoic acid for ASD; nicotinamide adenine dinucleotide phosphate, L-aspartic acid, and glycine for EPI; and adenosine triphosphate, L-glutamine, ornithine, L-arginine, L-lysine, citrulline, and L-homoserine for DD. Amino acid and energy metabolism pathways were most disrupted in all disorders, but the source of the disruption was different for each disorder. Disruption in vitamin and one-carbon metabolism was associated with DD and EPI, lipid pathway disruption was associated with EPI and redox metabolism disruption was related to ASD. Two microbiome metabolites were also detected in the CSF: shikimic and cis-cis-muconic acid. Overall, this study provides increased insight into unique metabolic disruptions in distinct but overlapping neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA