Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 166(2): 451-467, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419872

RESUMO

Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.


Assuntos
Mesoderma/citologia , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Coração/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Mesoderma/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Linha Primitiva/citologia , Linha Primitiva/metabolismo , Análise de Célula Única , Somitos/metabolismo , Células-Tronco , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
2.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728669

RESUMO

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Assuntos
Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Cristalografia por Raios X , Dimerização , Eritropoetina/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação Puntual , Engenharia de Proteínas , Receptores da Eritropoetina/agonistas , Receptores da Eritropoetina/antagonistas & inibidores , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 120(10): e2217199120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848564

RESUMO

COVID-19 remains a global pandemic of an unprecedented magnitude with millions of people now developing "COVID lung fibrosis." Single-cell transcriptomics of lungs of patients with long COVID revealed a unique immune signature demonstrating the upregulation of key proinflammatory and innate immune effector genes CD47, IL-6, and JUN. We modeled the transition to lung fibrosis after COVID and profiled the immune response with single-cell mass cytometry in JUN mice. These studies revealed that COVID mediated chronic immune activation reminiscent to long COVID in humans. It was characterized by increased CD47, IL-6, and phospho-JUN (pJUN) expression which correlated with disease severity and pathogenic fibroblast populations. When we subsequently treated a humanized COVID lung fibrosis model by combined blockade of inflammation and fibrosis, we not only ameliorated fibrosis but also restored innate immune equilibrium indicating possible implications for clinical management of COVID lung fibrosis in patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/etiologia , Síndrome de COVID-19 Pós-Aguda , Antígeno CD47 , Interleucina-6/genética , Imunidade Inata
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384332

RESUMO

Thrombopoietin (TPO) and the TPO-receptor (TPO-R, or c-MPL) are essential for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Agents that can modulate TPO-R signaling are highly desirable for both basic research and clinical utility. We developed a series of surrogate protein ligands for TPO-R, in the form of diabodies (DBs), that homodimerize TPO-R on the cell surface in geometries that are dictated by the DB receptor binding epitope, in effect "tuning" downstream signaling responses. These surrogate ligands exhibit diverse pharmacological properties, inducing graded signaling outputs, from full to partial TPO agonism, thus decoupling the dual functions of TPO/TPO-R. Using single-cell RNA sequencing and HSC self-renewal assays we find that partial agonistic diabodies preserved the stem-like properties of cultured HSCs, but also blocked oncogenic colony formation in essential thrombocythemia (ET) through inverse agonism. Our data suggest that dampening downstream TPO signaling is a powerful approach not only for HSC preservation in culture, but also for inhibiting oncogenic signaling through the TPO-R.


Assuntos
Receptores de Trombopoetina/metabolismo , Trombopoetina/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Epitopos/imunologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ligantes , Megacariócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Trombopoetina/imunologia , Receptores de Trombopoetina/fisiologia , Transdução de Sinais/fisiologia , Trombocitemia Essencial/metabolismo , Trombopoetina/fisiologia
5.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620713

RESUMO

In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.


Assuntos
Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose/patologia , Pele/lesões , Cicatrização/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Matriz Extracelular/metabolismo , Feminino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo
6.
J Med Virol ; 95(2): e28478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609964

RESUMO

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Assuntos
COVID-19 , Linfopenia , Animais , Camundongos , SARS-CoV-2/metabolismo , Antígeno B7-H1 , Evasão da Resposta Imune , NF-kappa B/metabolismo , Regulação para Cima , Citocinas/metabolismo
7.
Ann Surg ; 272(1): 183-193, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30585822

RESUMO

OBJECTIVE: To investigate the effects of local doxycycline administration on skin scarring. BACKGROUND: Skin scarring represents a major source of morbidity for surgical patients. Doxycycline, a tetracycline antibiotic with off-target effects on the extracellular matrix, has demonstrated antifibrotic effects in multiple organs. However, doxycycline's potential effects on skin scarring have not been explored in vivo. METHODS: Female C57BL/6J mice underwent dorsal wounding following an established splinted excisional skin wounding model. Doxycycline was administered by local injection into the wound base following injury. Wounds were harvested upon complete wound closure (postoperative day 15) for histological examination and biomechanical testing of scar tissue. RESULTS: A one-time dose of 3.90 mM doxycycline (2 mg/mL) within 12 hours of injury was found to significantly reduce scar thickness by 24.8% (P < 0.0001) without compromising tensile strength. The same effect could not be achieved by oral dosing. In doxycycline-treated scar matrices, collagen I content was significantly reduced (P = 0.0317) and fibers were favorably arranged with significantly increased fiber randomness (P = 0.0115). Common culprits of altered wound healing mechanics, including angiogenesis and inflammation, were not impacted by doxycycline treatment. However, engrailed1 profibrotic fibroblasts, responsible for scar extracellular matrix deposition, were significantly reduced with doxycycline treatment (P = 0.0005). CONCLUSIONS: Due to the substantial improvement in skin scarring and well-established clinical safety profile, locally administered doxycycline represents a promising vulnerary agent. As such, we favor rapid translation to human patients as an antiscarring therapy.


Assuntos
Cicatriz/prevenção & controle , Colágeno/efeitos dos fármacos , Doxiciclina/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Doxiciclina/administração & dosagem , Feminino , Injeções Intralesionais , Camundongos , Camundongos Endogâmicos C57BL , Resistência à Tração
8.
Proc Natl Acad Sci U S A ; 114(18): 4757-4762, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28424250

RESUMO

Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun-mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions.


Assuntos
Fibrose Pulmonar Idiopática , Mielofibrose Primária , Proteínas Proto-Oncogênicas c-jun , Escleroderma Sistêmico , Fator de Transcrição AP-1 , Antígeno 2 Relacionado a Fos/genética , Antígeno 2 Relacionado a Fos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
9.
Biol Blood Marrow Transplant ; 25(12): 2338-2349, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31415899

RESUMO

Graft-versus-host disease (GVHD) remains a major complication of allogeneic hematopoietic cell transplantation. Acute GVHD (aGVHD) results from direct damage by donor T cells, whereas the biology of chronic GVHD (cGVHD) with its autoimmune-like manifestations remains poorly understood, mainly because of the paucity of representative preclinical models. We examined over an extended time period 7 MHC-matched, minor antigen-mismatched mouse models for development of cGVHD. Development and manifestations of cGVHD were determined by a combination of MHC allele type and recipient strain, with BALB recipients being the most susceptible. The C57BL/6 into BALB.B combination most closely modeled the human syndrome. In this strain combination moderate aGVHD was observed and BALB.B survivors developed overt cGVHD at 6 to 12 months affecting eyes, skin, and liver. Naïve CD4+ cells caused this syndrome as no significant pathology was induced by grafts composed of purified hematopoietic stem cells (HSCs) or HSC plus effector memory CD4+ or CD8+ cells. Furthermore, co-transferred naïve and effector memory CD4+ T cells demonstrated differential homing patterns and locations of persistence. No clear association with donor Th17 cells and the phenotype of aGVHD or cGVHD was observed in this model. Donor CD4+ cells caused injury to medullary thymic epithelial cells, a key population responsible for negative T cell selection, suggesting that impaired thymic selection was an underlying cause of the cGVHD syndrome. In conclusion, we report for the first time that the C57BL/6 into BALB.B combination is a representative model of cGVHD that evolves from immunologic events during the early post-transplant period.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/patologia , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Células Th17/patologia
10.
Cancer Cell ; 7(4): 387-97, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15837627

RESUMO

Polycythemia vera (PV), essential thrombocythemia (ET), and myeloid metaplasia with myelofibrosis (MMM) are clonal disorders arising from hematopoietic progenitors. An internet-based protocol was used to collect clinical information and biological specimens from patients with these diseases. High-throughput DNA resequencing identified a recurrent somatic missense mutation JAK2V617F in granulocyte DNA samples of 121 of 164 PV patients, of which 41 had homozygous and 80 had heterozygous mutations. Molecular and cytogenetic analyses demonstrated that homozygous mutations were due to duplication of the mutant allele. JAK2V617F was also identified in granulocyte DNA samples from 37 of 115 ET and 16 of 46 MMM patients, but was not observed in 269 normal individuals. In vitro analysis demonstrated that JAK2V617F is a constitutively active tyrosine kinase.


Assuntos
Mutação de Sentido Incorreto/genética , Policitemia Vera/genética , Mielofibrose Primária/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Trombocitemia Essencial/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Ativação Enzimática/genética , Feminino , Genótipo , Granulócitos/metabolismo , Heterozigoto , Homozigoto , Humanos , Janus Quinase 2 , Masculino , Pessoa de Meia-Idade , Mitose/genética , Modelos Moleculares , Mucosa Bucal/metabolismo , Fosforilação , Mielofibrose Primária/complicações , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Recombinação Genética/genética , Transfecção
11.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888614

RESUMO

Skin scarring, the end result of adult wound healing, is detrimental to tissue form and function. Engrailed-1 lineage-positive fibroblasts (EPFs) are known to function in scarring, but Engrailed-1 lineage-negative fibroblasts (ENFs) remain poorly characterized. Using cell transplantation and transgenic mouse models, we identified a dermal ENF subpopulation that gives rise to postnatally derived EPFs by activating Engrailed-1 expression during adult wound healing. By studying ENF responses to substrate mechanics, we found that mechanical tension drives Engrailed-1 activation via canonical mechanotransduction signaling. Finally, we showed that blocking mechanotransduction signaling with either verteporfin, an inhibitor of Yes-associated protein (YAP), or fibroblast-specific transgenic YAP knockout prevents Engrailed-1 activation and promotes wound regeneration by ENFs, with recovery of skin appendages, ultrastructure, and mechanical strength. This finding suggests that there are two possible outcomes to postnatal wound healing: a fibrotic response (EPF-mediated) and a regenerative response (ENF-mediated).


Assuntos
Cicatriz/patologia , Fibroblastos/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regeneração , Pele/lesões , Cicatrização , Animais , Cicatriz/prevenção & controle , Fibroblastos/transplante , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Mecanotransdução Celular , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-yes/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transdução de Sinais , Estresse Mecânico , Ativação Transcricional , Transcriptoma , Verteporfina/farmacologia
12.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720095

RESUMO

To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry-based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Moléculas de Adesão Celular/imunologia , Estudos de Coortes , Citotoxicidade Imunológica , Feminino , Xenoenxertos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunofenotipagem , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Pandemias , Receptores Imunológicos/imunologia , Receptores Virais/imunologia , Carga Viral , Adulto Jovem
13.
Sci Transl Med ; 13(609): eabb3312, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516825

RESUMO

Pathologic skin scarring presents a vast economic and medical burden. Unfortunately, the molecular mechanisms underlying scar formation remain to be elucidated. We used a hypertrophic scarring (HTS) mouse model in which Jun is overexpressed globally or specifically in α-smooth muscle or collagen type I­expressing cells to cause excessive extracellular matrix deposition by skin fibroblasts in the skin after wounding. Jun overexpression triggered dermal fibrosis by modulating distinct fibroblast subpopulations within the wound, enhancing reticular fibroblast numbers, and decreasing lipofibroblasts. Analysis of human scars further revealed that JUN is highly expressed across the wide spectrum of scars, including HTS and keloids. CRISPR-Cas9­mediated JUN deletion in human HTS fibroblasts combined with epigenomic and transcriptomic analysis of both human and mouse HTS fibroblasts revealed that JUN initiates fibrosis by regulating CD36. Blocking CD36 with salvianolic acid B or CD36 knockout model counteracted JUN-mediated fibrosis efficacy in both human fibroblasts and mouse wounds. In summary, JUN is a critical regulator of pathological skin scarring, and targeting its downstream effector CD36 may represent a therapeutic strategy against scarring.


Assuntos
Antígenos CD36 , Cicatriz Hipertrófica , Proteínas Proto-Oncogênicas c-jun , Dermatopatias , Animais , Cicatriz Hipertrófica/patologia , Humanos , Camundongos , Pele/patologia , Dermatopatias/patologia
14.
Blood ; 111(9): 4788-96, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18252861

RESUMO

To determine whether aberrantly activated tyrosine kinases other than FLT3 and c-KIT contribute to acute myeloid leukemia (AML) pathogenesis, we used high-throughput (HT) DNA sequence ana-lysis to screen exons encoding the activation loop and juxtamembrane domains of 85 tyrosine kinase genes in 188 AML patients without FLT3 or c-KIT mutations. The screen identified 30 nonsynonymous sequence variations in 22 different kinases not previously reported in single-nucleotide polymorphism (SNP) databases. These included a novel FLT3 activating allele and a previously described activating mutation in MET (METT1010I). The majority of novel sequence variants were stably expressed in factor-dependent Ba/F3 cells. Apart from one FLT3 allele, none of the novel variants showed constitutive phosphorylation by immunoblot analysis and none transformed Ba/F3 cells to factor-independent growth. These findings indicate the majority of these alleles are not potent tyrosine kinase activators in this cellular context and that a significant proportion of nonsynonymous sequence variants identified in HT DNA sequencing screens may not have functional significance. Although some sequence variants may represent SNPs, these data are consistent with recent reports that a significant fraction of such sequence variants are "passenger" rather than "driver" alleles and underscore the importance of functional assessment of candidate disease alleles.


Assuntos
Leucemia Mieloide Aguda/enzimologia , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Quinases/genética , Sequência de Bases , Análise Mutacional de DNA , Humanos , Leucemia Mieloide Aguda/etiologia , Tirosina Quinase 3 Semelhante a fms
15.
JCI Insight ; 5(16)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814713

RESUMO

Scleroderma is a devastating fibrotic autoimmune disease. Current treatments are partly effective in preventing disease progression but do not remove fibrotic tissue. Here, we evaluated whether scleroderma fibroblasts take advantage of the "don't-eat-me-signal" CD47 and whether blocking CD47 enables the body's immune system to get rid of diseased fibroblasts. To test this approach, we used a Jun-inducible scleroderma model. We first demonstrated in patient samples that scleroderma upregulated transcription factor JUN and increased promoter accessibilities of both JUN and CD47. Next, we established our scleroderma model, demonstrating that Jun mediated skin fibrosis through the hedgehog-dependent expansion of CD26+Sca1- fibroblasts in mice. In a niche-independent adaptive transfer model, JUN steered graft survival and conferred increased self-renewal to fibroblasts. In vivo, JUN enhanced the expression of CD47, and inhibiting CD47 eliminated an ectopic fibroblast graft and increased in vitro phagocytosis. In the syngeneic mouse, depleting macrophages ameliorated skin fibrosis. Therapeutically, combined CD47 and IL-6 blockade reversed skin fibrosis in mice and led to the rapid elimination of ectopically transplanted scleroderma cells. Altogether, our study demonstrates the efficiency of combining different immunotherapies in treating scleroderma and provides a rationale for combining CD47 and IL-6 inhibition in clinical trials.


Assuntos
Antígeno CD47/metabolismo , Autorrenovação Celular/fisiologia , Fibroblastos/patologia , Escleroderma Sistêmico/patologia , Anilidas/administração & dosagem , Anilidas/farmacologia , Animais , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Pulmão/citologia , Masculino , Camundongos Endogâmicos , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Piridinas/administração & dosagem , Piridinas/farmacologia , Escleroderma Sistêmico/metabolismo
16.
Stem Cell Reports ; 14(4): 603-613, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32197115

RESUMO

Osteoporosis and osteoporotic fractures lead to decreased life quality and high healthcare costs. Current treatments prevent losses in bone mass and fractures to some extent but have side effects. Therefore, better therapies are needed. This study investigated whether the transcription factor Jun has a specific pro-osteogenic potency and whether modulating Jun could serve as a novel treatment for osteoporosis-associated fractures. We demonstrate that ectopically transplanted whole bones and distinct osteoprogenitors increase bone formation. Perinatal Jun induction disturbs growth plate architecture, causing a striking phenotype with shortened and thickened bones. Molecularly, Jun induces hedgehog signaling in skeletal stem cells. Therapeutically, Jun accelerates bone growth and healing in a drilling-defect model. Altogether, these results demonstrate that Jun drives bone formation by expanding osteoprogenitor populations and forcing them into the bone fate, providing a rationale for future clinical applications.


Assuntos
Osso e Ossos/patologia , Fraturas por Osteoporose/metabolismo , Fraturas por Osteoporose/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células-Tronco/metabolismo , Animais , Desenvolvimento Ósseo , Transplante Ósseo , Diferenciação Celular , Proliferação de Células , Consolidação da Fratura , Lâmina de Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Camundongos , Fenótipo , Transdução de Sinais
17.
Nat Commun ; 11(1): 2795, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493933

RESUMO

The transcription factor JUN is highly expressed in pulmonary fibrosis. Its induction in mice drives lung fibrosis, which is abrogated by administration of anti-CD47. Here, we use high-dimensional mass cytometry to profile protein expression and secretome of cells from patients with pulmonary fibrosis. We show that JUN is activated in fibrotic fibroblasts that expressed increased CD47 and PD-L1. Using ATAC-seq and ChIP-seq, we found that activation of JUN rendered promoters and enhancers of CD47 and PD-L1 accessible. We further detect increased IL-6 that amplified JUN-mediated CD47 enhancer activity and protein expression. Using an in vivo mouse model of fibrosis, we found two distinct mechanisms by which blocking IL-6, CD47 and PD-L1 reversed fibrosis, by increasing phagocytosis of profibrotic fibroblasts and by eliminating suppressive effects on adaptive immunity. Our results identify specific immune mechanisms that promote fibrosis and suggest a therapeutic approach that could be used alongside conventional anti-fibrotics for pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Imunidade , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Animais , Antígeno B7-H1/metabolismo , Lavagem Broncoalveolar , Antígeno CD47/metabolismo , Fibroblastos/patologia , Humanos , Terapia de Imunossupressão , Interleucina-6/metabolismo , Macrófagos/metabolismo , Camundongos , Fenótipo , Linfócitos T/imunologia
18.
Nat Commun ; 11(1): 4061, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792541

RESUMO

Adhesions are fibrotic scars that form between abdominal organs following surgery or infection, and may cause bowel obstruction, chronic pain, or infertility. Our understanding of adhesion biology is limited, which explains the paucity of anti-adhesion treatments. Here we present a systematic analysis of mouse and human adhesion tissues. First, we show that adhesions derive primarily from the visceral peritoneum, consistent with our clinical experience that adhesions form primarily following laparotomy rather than laparoscopy. Second, adhesions are formed by poly-clonal proliferating tissue-resident fibroblasts. Third, using single cell RNA-sequencing, we identify heterogeneity among adhesion fibroblasts, which is more pronounced at early timepoints. Fourth, JUN promotes adhesion formation and results in upregulation of PDGFRA expression. With JUN suppression, adhesion formation is diminished. Our findings support JUN as a therapeutic target to prevent adhesions. An anti-JUN therapy that could be applied intra-operatively to prevent adhesion formation could dramatically improve the lives of surgical patients.


Assuntos
Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Animais , Benzofenonas/farmacologia , Sistemas CRISPR-Cas , Células Cultivadas , Doxiciclina/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Humanos , Imuno-Histoquímica , Isoxazóis/farmacologia , Lipossomos/metabolismo , Camundongos , Células NIH 3T3 , Parabiose , RNA Mensageiro/metabolismo , Tamoxifeno/farmacologia
19.
J Neurosci Methods ; 313: 1-5, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389488

RESUMO

BACKGROUND: Animal models of optic nerve injury are often used to study central nervous system (CNS) degeneration and regeneration, and targeting the optic nerve is a powerful approach for axon-protective or remyelination therapy. However, the experimental delivery of drugs or cells to the optic nerve is rarely performed because injections into this structure are difficult in small animals, especially in mice. NEW METHOD: We investigated and developed methods to deliver drugs or cells to the mouse optic nerve through 3 different routes: a) intraorbital, b) through the optic foramen and c) transcranial. RESULTS: The methods targeted different parts of the mouse optic nerve: intraorbital proximal (intraorbital), intracranial middle (optic-foramen) or intracranial distal (transcranial) portion. COMPARISON WITH EXISTING METHODS: Most existing methods target the optic nerve indirectly. For instance, intravitreally delivered cells often cannot cross the inner limiting membrane to reach retinal neurons and optic nerve axons. Systemic delivery, eye drops and intraventricular injections do not always successfully target the optic nerve. Intraorbital and transcranial injections into the optic nerve or chiasm have been performed but these methods have not been well described. We approached the optic nerve with more selective and precise targeting than existing methods. CONCLUSIONS: We successfully targeted the murine optic nerve intraorbitally, through the optic foramen, and transcranially. Of all methods, the injection through the optic foramen is likely the most innovative and fastest. These methods offer additional approaches for therapeutic intervention to be used by those studying white matter damage and axonal regeneration in the CNS.


Assuntos
Modelos Animais de Doenças , Injeções/métodos , Nervo Óptico/efeitos dos fármacos , Órbita , Base do Crânio , Animais , Camundongos , Camundongos Endogâmicos C57BL
20.
Nat Commun ; 10(1): 617, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728354

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a curative therapy for blood and immune diseases with potential for many settings beyond current standard-of-care. Broad HSCT application is currently precluded largely due to morbidity and mortality associated with genotoxic irradiation or chemotherapy conditioning. Here we show that a single dose of a CD117-antibody-drug-conjugate (CD117-ADC) to saporin leads to > 99% depletion of host HSCs, enabling rapid and efficient donor hematopoietic cell engraftment. Importantly, CD117-ADC selectively targets hematopoietic stem cells yet does not cause clinically significant side-effects. Blood counts and immune cell function are preserved following CD117-ADC treatment, with effective responses by recipients to both viral and fungal challenges. These results suggest that CD117-ADC-mediated HSCT pre-treatment could serve as a non-myeloablative conditioning strategy for the treatment of a wide range of non-malignant and malignant diseases, and might be especially suited to gene therapy and gene editing settings in which preservation of immunity is desired.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Imunoconjugados/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Animais , Medula Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Candida albicans/patogenicidade , Morte Celular , Linhagem Celular , Feminino , Terapia Genética , Humanos , Imunoconjugados/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA