Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anesth Analg ; 130(5): 1176-1187, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32287125

RESUMO

BACKGROUND: Individualized hemodynamic monitoring approaches are not well validated. Thus, we evaluated the discriminative performance improvement that might occur when moving from noninvasive monitoring (NIM) to invasive monitoring and with increasing levels of featurization associated with increasing sampling frequency and referencing to a stable baseline to identify bleeding during surgery in a porcine model. METHODS: We collected physiologic waveform (WF) data (250 Hz) from NIM, central venous (CVC), arterial (ART), and pulmonary arterial (PAC) catheters, plus mixed venous O2 saturation and cardiac output from 38 anesthetized Yorkshire pigs bled at 20 mL/min until a mean arterial pressure of 30 mm Hg following a 30-minute baseline period. Prebleed physiologic data defined a personal stable baseline for each subject independently. Nested models were evaluated using simple hemodynamic metrics (SM) averaged over 20-second windows and sampled every minute, beat to beat (B2B), and WF using Random Forest Classification models to identify bleeding with or without normalization to personal stable baseline, using a leave-one-pig-out cross-validation to minimize model overfitting. Model hyperparameters were tuned to detect stable or bleeding states. Bleeding models were compared use both each subject's personal baseline and a grouped-average (universal) baseline. Timeliness of bleed onset detection was evaluated by comparing the tradeoff between a low false-positive rate (FPR) and shortest time to bleed detection. Predictive performance was evaluated using a variant of the receiver operating characteristic focusing on minimizing FPR and false-negative rates (FNR) for true-positive and true-negative rates, respectively. RESULTS: In general, referencing models to a personal baseline resulted in better bleed detection performance for all catheters than using universal baselined data. Increasing granularity from SM to B2B and WF progressively improved bleeding detection. All invasive monitoring outperformed NIM for both time to bleeding detection and low FPR and FNR. In that regard, when referenced to personal baseline with SM analysis, PAC and ART + PAC performed best; for B2B CVC, PAC and ART + PAC performed best; and for WF PAC, CVC, ART + CVC, and ART + PAC performed equally well and better than other monitoring approaches. Without personal baseline, NIM performed poorly at all levels, while all catheters performed similarly for SM, with B2B PAC and ART + PAC performing the best, and for WF PAC, ART, ART + CVC, and ART + PAC performed equally well and better than the other monitoring approaches. CONCLUSIONS: Increasing hemodynamic monitoring featurization by increasing sampling frequency and referencing to personal baseline markedly improves the ability of invasive monitoring to detect bleed.


Assuntos
Análise de Dados , Monitorização Hemodinâmica/métodos , Hemodinâmica/fisiologia , Hemorragia/diagnóstico , Hemorragia/fisiopatologia , Animais , Pressão Arterial/fisiologia , Débito Cardíaco , Feminino , Monitorização Fisiológica/métodos , Suínos
2.
J Electrocardiol ; 51(6S): S44-S48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30077422

RESUMO

Research demonstrates that the majority of alarms derived from continuous bedside monitoring devices are non-actionable. This avalanche of unreliable alerts causes clinicians to experience sensory overload when attempting to sort real from false alarms, causing desensitization and alarm fatigue, which in turn leads to adverse events when true instability is neither recognized nor attended to despite the alarm. The scope of the problem of alarm fatigue is broad, and its contributing mechanisms are numerous. Current and future approaches to defining and reacting to actionable and non-actionable alarms are being developed and investigated, but challenges in impacting alarm modalities, sensitivity and specificity, and clinical activity in order to reduce alarm fatigue and adverse events remain. A multi-faceted approach involving clinicians, computer scientists, industry, and regulatory agencies is needed to battle alarm fatigue.


Assuntos
Alarmes Clínicos , Segurança do Paciente , Sistemas Automatizados de Assistência Junto ao Leito , Erros de Diagnóstico , Eletrocardiografia , Falha de Equipamento , Humanos , Som
3.
Soft Robot ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324015

RESUMO

Although soft robots show safer interactions with their environment than traditional robots, soft mechanisms and actuators still have significant potential for damage or degradation particularly during unmodeled contact. This article introduces a feedback strategy for safe soft actuator operation during control of a soft robot. To do so, a supervisory controller monitors actuator state and dynamically saturates control inputs to avoid conditions that could lead to physical damage. We prove that, under certain conditions, the supervisory controller is stable and verifiably safe. We then demonstrate completely onboard operation of the supervisory controller using a soft thermally actuated robot limb with embedded shape memory alloy actuators and sensing. Tests performed with the supervisor verify its theoretical properties and show stabilization of the robot limb's pose in free space. Finally, experiments show that our approach prevents overheating during contact, including environmental constraints and human touch, or when infeasible motions are commanded. This supervisory controller, and its ability to be executed with completely onboard sensing, has the potential to make soft robot actuators reliable enough for practical use.

4.
Front Robot AI ; 9: 888261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655533

RESUMO

Untethered soft robots that locomote using electrothermally-responsive materials like shape memory alloy (SMA) face challenging design constraints for sensing actuator states. At the same time, modeling of actuator behaviors faces steep challenges, even with available sensor data, due to complex electrical-thermal-mechanical interactions and hysteresis. This article proposes a framework for in-situ sensing and dynamics modeling of actuator states, particularly temperature of SMA wires, which is used to predict robot motions. A planar soft limb is developed, actuated by a pair of SMA coils, that includes compact and robust sensors for temperature and angular deflection. Data from these sensors are used to train a neural network-based on the long short-term memory (LSTM) architecture to model both unidirectional (single SMA) and bidirectional (both SMAs) motion. Predictions from the model demonstrate that data from the temperature sensor, combined with control inputs, allow for dynamics predictions over extraordinarily long open-loop timescales (10 min) with little drift. Prediction errors are on the order of the soft deflection sensor's accuracy. This architecture allows for compact designs of electrothermally-actuated soft robots that include sensing sufficient for motion predictions, helping to bring these robots into practical application.

5.
Adv Mater ; 34(23): e2200857, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384096

RESUMO

Liquid crystal elastomers (LCEs) have attracted tremendous interest as actuators for soft robotics due to their mechanical and shape memory properties. However, LCE actuators typically respond to thermal stimulation through active Joule heating and passive cooling, which make them difficult to control. In this work, LCEs are combined with soft, stretchable thermoelectrics to create transducers capable of electrically controlled actuation, active cooling, and thermal-to-electrical energy conversion. The thermoelectric layers are composed of semiconductors embedded within a 3D printed elastomer matrix and wired together with eutectic gallium-indium (EGaIn) liquid metal interconnects. This layer is covered on both sides with LCE, which alternately heats and cools to achieve cyclical bending actuation in response to voltage-controlled Peltier activation. Moreover, the thermoelectric layer can harvest energy from thermal gradients between the two LCE layers through the Seebeck effect, allowing for regenerative energy harvesting. As demonstrations, first, closed-loop control of the transducer is performed to rapidly track a changing actuator position. Second, a soft robotic walker that is capable of walking toward a heat source and harvesting energy is introduced. Lastly, phototropic-inspired autonomous deflection of the limbs toward a heat source is shown, demonstrating an additional method to increase energy recuperation efficiency for soft systems.

6.
Physiol Meas ; 42(6)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-33910179

RESUMO

Objective.To develop a standardized format for exchanging clinical and physiologic data generated in the intensive care unit. Our goal was to develop a format that would accommodate the data collection pipelines of various sites but would not require dataset-specific schemas or ad-hoc tools for decoding and analysis.Approach.A number of centers had independently developed solutions for storing clinical and physiologic data using Hierarchical Data Format-Version 5 (HDF5), a well-supported standard already in use in multiple other fields. These individual solutions involved design choices that made the data difficult to share despite the underlying common framework. A collaborative process was used to form the basis of a proposed standard that would allow for interoperability and data sharing with common analysis tools.Main Results.We developed the HDF5-based critical care data exchange format which stores multiparametric data in an efficient, self-describing, hierarchical structure and supports real-time streaming and compression. In addition to cardiorespiratory and laboratory data, the format can, in future, accommodate other large datasets such as imaging and genomics. We demonstated the feasibility of a standardized format by converting data from three sites as well as the MIMIC III dataset.Significance.Individual approaches to the storage of multiparametric clinical data are proliferating, representing both a duplication of effort and a missed opportunity for collaboration. Adoption of a standardized format for clinical data exchange will enable the development of a digital biobank, facilitate the external validation of machine learning models and be a powerful tool for sharing multiparametric, high frequency patient level data in multisite clinical trials. Our proposed solution focuses on supporting standardized ontologies such as LOINC allowing easy reading of data regardless of the source and in so doing provides a useful method to integrate large amounts of existing data.


Assuntos
Cuidados Críticos , Genômica , Humanos , Unidades de Terapia Intensiva
7.
Crit Care Explor ; 1(10): e0058, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32166238

RESUMO

We hypothesize that knowledge of a stable personalized baseline state and increased data sampling frequency would markedly improve the ability to detect progressive hypovolemia during hemorrhage earlier and with a lower false positive rate than when using less granular data. DESIGN: Prospective temporal challenge. SETTING: Large animal research laboratory, University Medical Center. SUBJECTS: Fifty-one anesthetized Yorkshire pigs. INTERVENTIONS: Pigs were instrumented with arterial, pulmonary arterial, and central venous catheters and allowed to stabilize for 30 minutes then bled at a constant rate of either 5 mL·min-1 (n = 13) or 20 (n = 38) until mean arterial pressure decreased to 40 or 30 mm Hg in the 5 and 20 mL·min-1 pigs, respectively. MEASUREMENTS AND MAIN RESULTS: Data during the stabilization period served as baseline. Hemodynamic variables collected at 250 Hz were used to create predictive models of "bleeding" using featurized beat-to-beat and waveform data and compared with models using mean unfeaturized hemodynamic variables averaged over 1-minute as simple hemodynamic metrics using random forest classifiers to identify bleeding with or without baseline data. The robustness of the prediction was evaluated in a leave-one-pig-out cross-validation. Predictive performance of models was compared by their activity monitoring operating characteristic and receiver operating characteristic profiles. Primary hemodynamic threshold data poorly identified bleed onset unless very stable initial baseline reference data were available. When referenced to baseline, bleed detection at a false positive rates of 10-2 with time to detect 80% of pigs bleeding was similar for simple hemodynamic metrics, beat-to-beat, and waveform at about 3-4 minutes. Whereas when universally baselined, increasing sampling frequency reduced latency of bleed detection from 10 to 8 to 6 minutes, for simple hemodynamic metrics, beat-to-beat, and waveform, respectively. Some informative features differed between simple hemodynamic metrics, beat-to-beat, and waveform models. CONCLUSIONS: Knowledge of personal stable baseline data allows for early detection of new-onset bleeding, whereas if no personal baseline exists increasing sampling frequency of hemodynamic monitoring data improves bleeding detection earlier and with lower false positive rate.

8.
Genome Announc ; 4(4)2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27516497

RESUMO

BetterKatz is a bacteriophage isolated from a soil sample collected in Pittsburgh, Pennsylvania using the host Gordonia terrae 3612. BetterKatz's genome is 50,636 bp long and contains 75 predicted protein-coding genes, 35 of which have been assigned putative functions. BetterKatz is not closely related to other sequenced Gordonia phages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA