Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067521

RESUMO

Achillea millefolium L. herb and flowers have high biological activity; hence, they are used in medicine and cosmetics. The aim of this study was to perform morpho-anatomical analyses of the raw material, including secretory tissues, histochemical assays of the location of lipophilic compounds, and quantitative and qualitative analysis of essential oil (EO). Light and scanning electron microscopy techniques were used to analyse plant structures. The qualitative analyses of EO were carried out using gas chromatography-mass spectrometry (GC/MS). The results of this study showed the presence of exogenous secretory structures in the raw material, i.e., conical cells (papillae) on the adaxial surface of petal teeth and biseriate glandular trichomes on the surface flowers, bracts, stems, and leaves. Canal-shaped endogenous secretory tissue was observed in the stems and leaves. The histochemical assays revealed the presence of total, acidic, and neutral lipids as well as EO in the glandular trichome cells. Additionally, papillae located at the petal teeth contained neutral lipids. Sesquiterpenes were detected in the glandular trichomes and petal epidermis cells. The secretory canals in the stems were found to contain total and neutral lipids. The phytochemical assays demonstrated that the A. millefolium subsp. millefolium flowers contained over 2.5-fold higher amounts of EO (6.1 mL/kg) than the herb (2.4 mL/kg). The EO extracted from the flowers and herb had a similar dominant compounds: ß-pinene, bornyl acetate, (E)-nerolidol, 1,8-cineole, borneol, sabinene, camphor, and α-pinene. Both EO samples had greater amounts of monoterpenes than sesquiterpenes. Higher amounts of oxygenated monoterpenes and oxygenated sesquiterpenoids were detected in the EO from the herb than from the flowers.


Assuntos
Achillea , Óleos Voláteis , Sesquiterpenos , Óleos Voláteis/química , Achillea/química , Flores/química , Folhas de Planta/química , Sesquiterpenos/análise , Monoterpenos/análise
2.
Molecules ; 27(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209163

RESUMO

(1) Background: Centaurea cyanus L. is a medicinal plant whose flowers are widely used in herbal medicine. The aim of the study was to localise flower tissues that are responsible for the production of secretory products in petals and to analyse the volatile compounds. The volatile compounds of the flowers of this species have not been investigated to date. (2) Methods: Light, fluorescence, scanning and transmission electron microscopy techniques were used in the study. Lipophilic compounds were localised in the tissues using histochemical assays. Volatile compounds were determined with the use of solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). (3) Results: The study showed production of secretion in the petal parenchyma, whose ultrastructure has features of a secretory tissue. The lipophilic secretion was localised in the cells and intercellular spaces of the parenchyma and in the walls and surface of epidermal cells, where it accumulated after release through cuticle microchannels. Sesquiterpenes were found to constitute the main group of volatile compounds, with the highest content of ß-caryophyllene (26.17%) and α-humulene (9.77%). (4) Conclusions: Given the presence of some volatile components that are often found in resins (caryophyllene, delta-cadinene) and the abundant secretion residues on the epidermal surface, we suppose that the C. cyanus secretion released by the flowers is a resinaceous mixture (oleoresin), which is frequently found in plants, as shown by literature data. This secretion may play an important role in the therapeutic effects of C. cyanus flowers.


Assuntos
Centaurea/química , Flores/química , Flores/citologia , Flores/ultraestrutura , Compostos Fitoquímicos/química , Compostos Orgânicos Voláteis/química , Imunofluorescência , Histocitoquímica , Estrutura Molecular , Fenótipo , Compostos Fitoquímicos/análise , Compostos Orgânicos Voláteis/análise
3.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080239

RESUMO

Natural defensive substances synthesized by plants that could replace synthetic pesticides in the protection of plants against insect invasions are constantly being sought. The study assessed changes in the qualitative and quantitative composition of secondary metabolites in horse chestnut leaves collected in different locations and differing in the sensitivity of the plant to the invasion by the horse-chestnut leaf miner. An attempt was made to identify compounds that are most responsible for the increased plant resistance to this threat. Additionally, changes in the anatomy of chestnut leaves affected by the pest were presented. It was noticed that the trees differed in the composition of secondary metabolites already in the initial growing season, which should be related to the influence of habitat conditions. The analysis of the profile of the compounds in non-infested and infested horse chestnut leaves revealed a clear response of the plant to the stress factor, i.e., the foraging of the horse-chestnut leaf miner. Catechins seem to be compounds involved in plant resistance. The leaf anatomy showed enhanced accumulation of phenolic compounds at the pest foraging sites. Hypertrophy and thickened and cracked cell walls of the spongy parenchyma were visible in the vicinity of the mines.


Assuntos
Aesculus , Fagaceae , Mariposas , Animais , Ecossistema , Mariposas/fisiologia , Folhas de Planta , Árvores
4.
Environ Res ; 193: 110542, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271139

RESUMO

Previous studies have demonstrated that plants are a very good indicator of global environmental variations. The responses of many plant species to climate change are confirmed by aerobiological research. This paper presents an analysis of many parameters of pollen seasons in the Amaranthaceae family based on measurements of pollen concentrations in atmospheric air. Pollen samples were collected with the volumetric method at a sampling site in Lublin (Poland) in 2001-2019. The obtained data were verified using statistical analyses. Moreover, the presence of pollenkitt on the pollen grain surface was examined in fresh anthers using scanning electron and light microscopes, since there are some difficulties in identification of Amaranthaceae pollen grains deposited on microscopic slides in aerobiological analysis. The pollen season in Amaranthaceae began on average on June 23 and ended on October 5, i.e. it lasted 105 days. The peak value and annual pollen sum were characterized by the highest variability in the study years in comparison with other season characteristics. The annual pollen sum was in the range from 183 to 725. Maximum concentrations were most often recorded in the second half of August, which is associated with the greatest risk of development of pollen allergy symptoms in sensitive subjects during this period. The results obtained in the 19-year study revealed that the pollen seasons began 14 days earlier. Similarly, the end of the season was accelerated by 24 days. The response of these plants to climate change also include the reduced pollen production by representatives of this family, which was manifested by a decrease in the annual sum of daily airborne pollen concentrations, on average by 35%, and a reduction in the maximum pollen concentration, on average by more than 60%. We found that temperature in May and June had an effect on pollen release, and relative air humidity in May influenced pollen concentrations. We noted significant similarities in the pollen release rate during the last 8 years of the study. The scanning electron microscopy examinations showed that the pollen grain surface in the representative of this family was covered completely or partially with pollenkitt. Hence, the apertures characteristic for pollen in this family were poorly visible. The presence of pollenkitt on the surface of these polyaperturate pollen grains may play an important role in preventing water loss during pollen migration in the air. Our research has demonstrated the response of plants flowering in summer to climate change. The results not only have practical importance for public health in the aspect of allergy risk but can also help to assess environmental changes.


Assuntos
Amaranthaceae , Mudança Climática , Alérgenos , Monitoramento Ambiental , Humanos , Polônia , Pólen , Estações do Ano
5.
Int J Biometeorol ; 65(4): 513-526, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33175212

RESUMO

In recent years, allergies due to airborne pollen allergens have shown an increasing trend, along with the severity of allergic symptoms in most industrialized countries, while synergism with other common atmospheric pollutants has also been identified as affecting the overall quality of citizenly life. In this study, we propose the state-of-the-art WRF-Chem model, which is a complex Eulerian meteorological model integrated on-line with atmospheric chemistry. We used a combination of the WRF-Chem extended towards birch pollen, and the emission module based on heating degree days, which has not been tested before. The simulations were run for the moderate season in terms of birch pollen concentrations (year 2015) and high season (year 2016) over Central Europe, which were validated against 11 observational stations located in Poland. The results show that there is a big difference in the model's performance for the two modelled years. In general, the model overestimates birch pollen concentrations for the moderate season and highly underestimates birch pollen concentrations for the year 2016. The model was able to predict birch pollen concentrations for first allergy symptoms (above 20 pollen m-3) as well as for severe symptoms (above 90 pollen m-3) with probability of detection at 0.78 and 0.68 and success ratio at 0.75 and 0.57, respectively for the year 2015. However, the model failed to reproduce these parameters for the year 2016. The results indicate the potential role of correcting the total seasonal pollen emission in improving the model's performance, especially for specific years in terms of pollen productivity. The application of chemical transport models such as WRF-Chem for pollen modelling provides a great opportunity for simultaneous simulations of chemical air pollution and allergic pollen with one goal, which is a step forward for studying and understanding the co-exposure of these particles in the air.


Assuntos
Betula , Pólen , Alérgenos , Europa (Continente) , Polônia
6.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299441

RESUMO

The aim of this study was to conduct a histochemical analysis to localize lipids, terpenes, essential oil, and iridoids in the trichomes of the L. album subsp. album corolla. Morphometric examinations of individual trichome types were performed. Light and scanning electron microscopy techniques were used to show the micromorphology and localization of lipophilic compounds and iridoids in secretory trichomes with the use of histochemical tests. Additionally, the content of essential oil and its components were determined using gas chromatography-mass spectrometry (GC-MS). Qualitative analyses of triterpenes carried out using high-performance thin-layer chromatography (HPTLC) coupled with densitometric detection, and the iridoid content expressed as aucubin was examined with spectrophotometric techniques. We showed the presence of iridoids and different lipophilic compounds in papillae and glandular and non-glandular trichomes. On average, the flowers of L. album subsp. album yielded 0.04 mL/kg of essential oil, which was dominated by aldehydes, sesquiterpenes, and alkanes. The extract of the L. album subsp. album corolla contained 1.5 × 10-3 ± 4.3 × 10-4 mg/mL of iridoid aucubin and three triterpenes: oleanolic acid, ß-amyrin, and ß-amyrin acetate. Aucubin and ß-amyrin acetate were detected for the first time. We suggest the use of L. album subsp. album flowers as supplements in human nutrition.


Assuntos
Iridoides/química , Lamiaceae/química , Óleos Voláteis/química , Triterpenos/química , Cromatografia em Camada Fina/métodos , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Iridoides/análise , Lamiaceae/metabolismo , Óleos Voláteis/análise , Compostos Fitoquímicos/análise , Folhas de Planta/química , Sesquiterpenos/análise , Tricomas/química , Triterpenos/análise
7.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352709

RESUMO

Flos Lamii albi has a high biological activity and is widely used in herbal medicine. The aim of the study was to characterize the secretory structures present in Lamium album subsp. album corolla and the location of phenolic compounds. Additionally, we carried out qualitative phytochemical analyses of flavonoids and phenolic acids. Light, fluorescence, and scanning electron microscopy were used to analyze the structure of the floral organs. The main classes of phenolic compounds and their localization were determined histochemically. Phytochemical analyses were performed with high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). Six types of glandular trichomes were found which contained flavonoids, phenolic acids, and tannins. The phytochemical studies demonstrated the presence of caffeic, chlorogenic, ferulic, gallic, p-coumaric, protocatechuic, syringic, gentisic, and vanillic phenolic acids as well as rutoside, isoquercetin, and quercetin flavonoids. The corolla in L. album subsp. album has antioxidant properties due to the presence of various polyphenols, as shown by the histo- and phytochemical analyses. The distribution and morphology of trichomes and the content of phenolic compounds in the corolla have taxonomic, pharmacognostic, and practical importance, facilitating the identification of the raw material.


Assuntos
Flores/química , Lamiaceae/química , Fenóis/química , Compostos Fitoquímicos/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Flavonoides/química , Hidroxibenzoatos/química , Plantas Medicinais/química , Polifenóis/química , Taninos/química , Tricomas/química
8.
J Environ Sci (China) ; 65: 271-281, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548398

RESUMO

The spores of Cladosporium Link. are often present in the air in high quantities and produce many allergenic proteins, which may lead to asthma. An aerobiological spore monitoring program can inform patients about the current spore concentration in air and help their physicians determine the spore dose that is harmful for a given individual. This makes it possible to develop optimized responses and propose personalized therapy for a particular sensitive patient. The aim of this study was to assess the extent of the human health hazard posed by the fungal genus Cladosporium. For the first time, we have determined the number of days on which air samples in Poland exceeded the concentrations linked to allergic responses of sensitive patients, according to thresholds established by three different groups (2800/3000/4000 spores per 1m3 of the air). The survey was conducted over three consecutive growing seasons (April-September, 2010-2012) in three cities located in different climate zones of Poland (Poznan, Lublin and Rzeszow). The average number of days exceeding 2800 spores per cubic meter (the lowest threshold) ranged from 61 (2010) through 76 (2011) to 93 (2012), though there was significant variation between cities. In each year the highest concentration of spores in the air was detected in either Poznan or Lublin, both located on large plains with intensive agriculture. We have proposed that an effective, science-based software platform to support policy-making on air quality should incorporate biological air pollutant data, such as allergenic fungal spores and pollen grains.


Assuntos
Microbiologia do Ar , Cladosporium , Exposição Ambiental/estatística & dados numéricos , Esporos Fúngicos , Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental , Humanos , Polônia , Estações do Ano
9.
Glob Chang Biol ; 22(9): 3067-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26748862

RESUMO

Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non-native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long-distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion.


Assuntos
Ambrosia , Mudança Climática , Espécies Introduzidas , Modelos Teóricos , Europa (Continente)
10.
Aerobiologia (Bologna) ; 32: 109-126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034537

RESUMO

Temperature is the environmental factor that systematically changes for decades and, as in plants and animals, can significantly affect the growth and development of fungi, including the abundance of their sporulation. During the time of study (2010-2012), a rapid increase in air temperature was observed in Poland, which coincided with the substantial decrease in rainfall. The increase in annual mean temperatures at three monitoring sites of this study was 0.9 °C in Lublin and Rzeszow (east Poland) and 2.0 °C in Poznan (west Poland). Such warming of air masses was comparable to the average global air temperature rise in the period of 1880-2012 accounting for 0.85 °C, as reported by the Intergovernmental Panel on Climate Change. Moreover, there was a substantial decrease in rainfall, ranging from 32.7 % (Poznan) to 43.0 % (Rzeszow). We have demonstrated that under such conditions the mean and median values of total Cladosporium spore counts significantly increased and the spore seasons were greatly accelerated. Moreover, earlier start and later end of the season caused its extension, lasting from over 20 days in Rzeszow to around 60 days in Lublin and Poznan, when the cumulative amount of 5-95 % of spores was considered. The time of reaching the cumulative amount of 50 % of spores was up to 25 days earlier (difference in Poznan between 2010 and 2012). There was also a striking acceleration of the date of the maximal Cladosporium spore concentration per cubic metre of air (26 days for Lublin, 43 for Poznan and 56 for Rzeszow).

11.
Aerobiologia (Bologna) ; 32(3): 453-468, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27616811

RESUMO

The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus, Alnus, and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

12.
Ann Agric Environ Med ; 31(2): 185-192, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940101

RESUMO

INTRODUCTION AND OBJECTIVE: Species of the genus Artemisia (Asteraceae) are weeds and ruderal plants growing in northern temperate regions of the world. Many of them are used in medicine and the cosmetic industry and for culinary purposes. Pollen grains of plants of this genus contain the most important aeroallergens. MATERIAL AND METHODS: An aerobiological study conducted with the volumetric method in Lublin in 2001-2022. Trend lines for the season parameters were established. Spearman's correlation and stepwise regression analyses were carried out to determine relationships between various parameters of the pollen season and meteorological factors. PCA analysis was also carried out to visually compare the pollen seasons. RESULTS: In Lublin, central-eastern Poland, the Artemisia pollen season lasted on average from the second ten days of July to the end of August, with its beginning depending on the temperature in April and May. The highest pollen concentrations were mainly recorded in the first half of August and were largely dependent on the mean temperature in June and July. The second peak in the pollen season recorded in September was associated with the presence of Artemisia annua pollen. Intense sunshine in June and the higher temperatures in June and July resulted in significant reduction in the Artemisia annual pollen sum (by 65%) over 22 years. Artemisia vulgaris is abundant in the Lublin region and contributes substantially to the amount of Artemisia pollen in the aeroplankton. CONCLUSIONS: The downward trend in the amount of Artemisia pollen was a result of the increase in temperatures observed in the summer months, and the declining rainfall rates. The global warming effect is extremely unfavourable for plants of Artemisia vulgaris, as they require moist soil substrates for growth.


Assuntos
Artemisia , Aquecimento Global , Pólen , Estações do Ano , Polônia , Pólen/química , Artemisia/crescimento & desenvolvimento , Alérgenos/análise , Temperatura , Poluentes Atmosféricos/análise , Monitoramento Ambiental
13.
Micron ; 171: 103474, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156083

RESUMO

Lamium album is a native common plant growing in Eurasia. It is used in medicine and cosmetics and is highly valued in apiculture. The aim of the study was to investigate the structure of the floral nectary in three stages of flower development. Additionally, histochemical studies of the nectary and nectar guides present on the lower corolla lobe were carried out. No detailed analyses of nectary tissues in this species have been conducted to date. The present analyses were performed with the use of light, fluorescence, and scanning electron microscopy. The nectary gland in the flowers of Lamium album subsp. album formed an incomplete ring at the ovary base. The nectarostomata were arranged in clusters only in the adaxial epidermis of the anterior part of the nectary. During the secretory activity of the nectary (1st day of flowering), numerous small vacuoles and cells with large lobulate nuclei with surrounding plastid clusters were observed in the epidermis and glandular parenchyma cells. The vascular bundles contained xylem and phloem elements. Corolla wilting (3rd day of flowering) was accompanied by destructive changes in the nectary parenchyma, leading to the formation of empty spaces and appearance of cell remnants on the nectary surface. The histochemical analyses revealed the presence of starch and phenolic compounds as well as acidic and neutral lipids, which are characteristic of essential oils, in the nectary tissues. The nectar guides were composed of large yellow papillae containing phenolic compounds and acidic and neutral lipids, which were also present in glandular trichomes and abaxial parenchyma cells. The present study has demonstrated that the scent of Lamium album subsp. album flowers is produced with the involvement of essential oils contained in adaxial and abaxial epidermis cells, glandular trichomes, and nectary tissues.


Assuntos
Flores , Néctar de Plantas , Néctar de Plantas/química , Néctar de Plantas/metabolismo , Flores/metabolismo , Microscopia Eletrônica de Varredura , Tricomas , Lipídeos
14.
Plants (Basel) ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987103

RESUMO

Although lime trees have numerous benefits, they can pose a threat to allergy sufferers during the flowering period, as their pollen exhibits allergenic properties. This paper presents the results of 3 years of aerobiological research (2020-2022) carried out with the volumetric method in Lublin and Szczecin. A comparison of the pollen seasons in both cities revealed substantially higher concentrations of lime pollen in the air of Lublin than of Szczecin. In the individual years of the study, the maximum pollen concentrations were approximately 3-fold higher, and the annual pollen sum was about 2-3 times higher in Lublin than in Szczecin. Considerably higher lime pollen concentrations were recorded in both cities in 2020 than in the other years, which was probably associated with the 1.7-2.5 °C increase in the average temperature in April compared to the other two years. The maximum lime pollen concentrations were recorded during the last ten days of June or at the beginning of July in both Lublin and Szczecin. This period was associated with the greatest risk of pollen allergy development in sensitive subjects. The increased production of lime pollen in 2020 and in 2018-2019 with the increase in the mean temperature in April, reported in our previous study, may indicate a response of lime trees to the global warming phenomenon. Cumulative temperatures calculated for Tilia may serve as a basis for forecasting the beginning of the pollen season.

15.
Sci Total Environ ; 905: 167095, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748607

RESUMO

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.


Assuntos
Alérgenos , Ambrosia , Humanos , Europa (Continente) , Pólen
16.
Protoplasma ; 259(6): 1467-1476, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35260941

RESUMO

Chaenomeles japonica is an attractive ornamental shrub flowering in spring. It is also a valuable source of nectar and pollen for entomofauna. The study was carried out to investigate the structure of hypanthial nectaries present in the flowers of this species with the use of light and scanning electron microscopy. Nectary tissues were examined in three stages of flowering, with special focus placed on changes occurring in the epidermis and nectariferous parnechyma. Long-styled flowers, which produce nectar abundantly, were selected for the study. The nectary parenchyma was shown to consist of multiple cell layers (up to 20). The epidermis was initially single-layered, but the number of layers gradually increased to 2-3 during the following days of flowering. The outer walls of epidermis cells were covered by a strongly undulating cuticle with massive striae. Cracks and perforations, which are probably nectar release sites, were visible between the striae. The presence of the secretion in the intercellular spaces between the parenchyma layer and the epidermis may indicate apoplastic nectar transport. The presence of stomata, as well as pores in the cuticle layer of the nectary epidermis, suggests that C. japonica nectar is secreted in two ways: (i) through the nectarostomata and (ii) ordinary epidermis cells with the involvement of the cuticle.


Assuntos
Néctar de Plantas , Rosaceae , Flores/química , Microscopia Eletrônica de Varredura , Néctar de Plantas/química , Reprodução
17.
Micron ; 162: 103345, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113361

RESUMO

Trollius europeus L. flowers produce nectar available to various groups of insects. No anatomical studies of these floral nectaries have been conducted to date. This study presents the structure of nectaries at different levels of organisation and the characteristics of petaloids, nectary leaves (petals), and stamens, including their micromorphology. The analyses of the nectaries were carried out with the use of light, fluorescence, scanning electron, and transmission electron microscopy techniques. The nectary located in a small cavity on the nectary leaf consists of the epidermis, nectar-producing parenchyma, and subnectary parenchyma, which has three large vascular bundles containing phloem and xylem. Amyloplasts with starch granules are present only in the parenchyma surrounding the vascular bundles. The other cells of the nectary parenchyma contain only chromoplasts with large plastoglobules. Since there are no chloroplasts, sugars required for nectar production are assumed to originate from phloem sap. The numerous plasmodesmata in the cell walls indicate a symplastic route of pre-nectar. Nectar is secreted onto the nectary surface in the holocrine mode. After disorganisation of the cytoplasmic structure, the epidermal cell wall is disrupted and the cell contents along with the nectar are released into the depression on the nectary leaf. The secretion of nectar from cells is non-synchronous and lasts 4-5 days. The content of nectar proteins and lipids derived from the cytoplasm of epidermal cells increases the nutritional value of the secretion, which may be important for pollinators.


Assuntos
Flores , Néctar de Plantas , Flores/metabolismo , Lipídeos , Microscopia Eletrônica de Transmissão , Néctar de Plantas/metabolismo , Amido/metabolismo , Açúcares/metabolismo
18.
Biology (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421367

RESUMO

Dracocephalum moldavica is an aromatic plant with a lemon scent and versatile use. Its flowers produce large amounts of nectar, which is collected by bees and bumblebees. The aim of the study was to investigate the structure of the floral nectary in this melliferous plant, which has not been analysed to date. The analyses were carried out with the use of light, fluorescence, scanning electron, and transmission electron microscopy, as well as histochemical techniques. The four-lobed nectary with a diameter of 0.9-1.2 mm and a maximum height of 1.2 mm is located at the ovary base; one of its lobes is larger than the others and bears 20-30 nectarostomata and 8-9 glandular trichomes. The histochemical assays revealed the presence of essential oil and phenolic compounds in the nectary tissues and in glandular trichomes. The nectary tissues are supplied by xylem- and phloem-containing vascular bundles. The nectariferous parenchyma cells have numerous mitochondria, plastids, ribosomes, dictyosomes, ER profiles, vesicles, thin cell walls, and plasmodesmata. Starch grains are present only in the tissues of nectaries in floral buds. The study showed high metabolic activity of D. moldavica nectary glands, i.e., production of not only nectar but also essential oil, which may increase the attractiveness of the flowers to pollinators, inhibit the growth of fungal and bacterial pathogens, and limit pest foraging.

19.
Sci Total Environ ; 807(Pt 3): 151028, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34666079

RESUMO

We analyse the impact of ground-based data assimilation to the Weather Research and Forecasting (WRF) meteorological model on parameters relevant for birch pollen emission calculations. Then, we use two different emission databases (BASE - no data assimilation, OBSNUD - data assimilation for the meteorological model) in the chemical transport model and evaluate birch pollen concentrations. Finally, we apply a scaling factor for the emissions (BASE and OBSNUD), based on the ratio between simulated and observed seasonal pollen integral (SPIn) to analyse its impact on birch concentrations over Central Europe. Assimilation of observational data significantly reduces model overestimation of air temperature, which is the main parameter responsible for the start of pollen emission and amount of released pollen. The results also show that a relatively small bias in air temperature from the model can lead to significant differences in heating degree days (HDD) value. This may cause the HDD threshold to be attained several days earlier/later than indicated from observational data which has further impact on the start of pollen emission. Even though the bias for air temperature was reduced for OBSNUD, the model indicates a start for the birch pollen season that is too early compared to observations. The start date of the season was improved at two of the 11 stations in Poland. Data assimilation does not have a significant impact on the season's end or SPIn value. The application of the SPIn factor for the emissions results in a much closer birch pollen concentration level to observations even though the factor does not improve the start or end of the pollen season. The post-processing of modelled meteorological fields, such as the application of bias correction, can be considered as a way to further improve the pollen emission modelling.


Assuntos
Betula , Meteorologia , Pólen , Estações do Ano , Temperatura
20.
PLoS One ; 16(8): e0256466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424936

RESUMO

Birch belongs to the most important allergenic taxa in Europe, therefore information on the start dates of the pollen season is very important for allergists and their patients as well as for climatologists. The study examined changes in the start of the birch pollen season as well as determined the trend of these changes. Pollen monitoring was performed in Lublin (eastern Poland) in the period 2001-2019 using the volumetric method. The Makra-test was used to detect periods with significantly higher or lower average of the onset than the average for the whole dataset. Two significant falls in the average of the pollen season start were found in 2007 and 2014. Besides, taking into account the 2-3-year rhythm of high and low concentrations of birch pollen in the atmospheric air, linear trends were fitted for the subsets of high and low abundance seasons. Significant changes in Betula pollen season start dates were only determined for the highly abundance seasons, while the results for seasons with a low concentration did not allow rejecting the hypothesis about the lack of a linear trend in the changes in the studied parameter. Moreover, a significant polynomial relationship was found between the beginning of a pollen season and the average values of monthly temperatures preceded a season. These analyses show that the start dates of the Betula pollen season are getting significantly earlier. The dynamics of changes differ between seasons with high and low concentrations of pollen.


Assuntos
Betula , Rinite Alérgica Sazonal , Alérgenos , Monitoramento Ambiental , Pólen , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA