Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 563(7733): 681-685, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30487614

RESUMO

The mid-latitude westerly winds of the Southern Hemisphere play a central role in the global climate system via Southern Ocean upwelling1, carbon exchange with the deep ocean2, Agulhas leakage (transport of Indian Ocean waters into the Atlantic)3 and possibly Antarctic ice-sheet stability4. Meridional shifts of the Southern Hemisphere westerly winds have been hypothesized to occur5,6 in parallel with the well-documented shifts of the intertropical convergence zone7 in response to Dansgaard-Oeschger (DO) events- abrupt North Atlantic climate change events of the last ice age. Shifting moisture pathways to West Antarctica8 are consistent with this view but may represent a Pacific teleconnection pattern forced from the tropics9. The full response of the Southern Hemisphere atmospheric circulation to the DO cycle and its impact on Antarctic temperature remain unclear10. Here we use five ice cores synchronized via volcanic markers to show that the Antarctic temperature response to the DO cycle can be understood as the superposition of two modes: a spatially homogeneous oceanic 'bipolar seesaw' mode that lags behind Northern Hemisphere climate by about 200 years, and a spatially heterogeneous atmospheric mode that is synchronous with abrupt events in the Northern Hemisphere. Temperature anomalies of the atmospheric mode are similar to those associated with present-day Southern Annular Mode variability, rather than the Pacific-South American pattern. Moreover, deuterium-excess records suggest a zonally coherent migration of the Southern Hemisphere westerly winds over all ocean basins in phase with Northern Hemisphere climate. Our work provides a simple conceptual framework for understanding circum-Antarctic temperature variations forced by abrupt Northern Hemisphere climate change. We provide observational evidence of abrupt shifts in the Southern Hemisphere westerly winds, which have previously documented1-3 ramifications for global ocean circulation and atmospheric carbon dioxide. These coupled changes highlight the necessity of a global, rather than a purely North Atlantic, perspective on the DO cycle.

2.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404879

RESUMO

Studies of climate effects on ecology often account for non-stationarity in individual physical and biological variables, but rarely allow for non-stationary relationships among variables. Here, we show that non-stationary relationships among physical and biological variables are central to understanding climate effects on salmon (Onchorynchus spp.) in the Gulf of Alaska during 1965-2012. The relative importance of two leading patterns in North Pacific climate, the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO), changed around 1988/1989 as reflected by changing correlations with leading axes of sea surface temperature variability. Simultaneously, relationships between the PDO and Gulf of Alaska environmental variables weakened, and long-standing temperature-salmon and PDO-salmon covariance declined to zero. We propose a mechanistic explanation for changing climate-salmon relationships in terms of non-stationary atmosphere-ocean interactions coinciding with changing PDO-NPGO relative importance. We also show that regression models assuming stationary climate-salmon relationships are inappropriate over the multidecadal time scale we consider. Relaxing assumptions of stationary relationships markedly improved modelling of climate effects on salmon catches and productivity. Attempts to understand the implications of changing climate patterns in other ecosystems might also be aided by the application of models that allow associations among environmental and biological variables to change over time.


Assuntos
Mudança Climática , Clima , Pesqueiros , Salmão/fisiologia , Alaska , Animais , Modelos Teóricos , Oceano Pacífico , Dinâmica Populacional , Análise de Regressão , Estações do Ano , Especificidade da Espécie
3.
Ecology ; 100(8): e02760, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127608

RESUMO

Common approaches for summarizing multivariate environmental or community data assume that relationships among variables are stationary over time, and this assumption is often not tested. Here we test the hypothesis that relationships among environmental and community time series are nonstationary in the Gulf of Alaska ecosystem (North Pacific Ocean) over multidecadal time scales. Dynamic factor analysis (DFA) is applied to environmental and community data from before and after 1988/1989, corresponding to the timing of an abrupt decline in temporal variance of the Aleutian Low atmospheric pattern, a leading driver of Gulf of Alaska climate. Results show that covariance among local atmosphere and ocean environmental variables weakened simultaneous to the decline in Aleutian Low variance. At the same time, community-wide responses of 14 fish and crustacean populations to physical forcing weakened, as indicated by nonstationary environment-biology regression coefficients. In line with theoretical predictions, this loss of a shared response to environmental variability was accompanied by weakening community covariance. Individual populations also showed nonstationary relationships with shared trends of community variability. We conclude that assumptions of fixed environmental and community relationships are likely to produce mistaken inference in this ecosystem. Similar concerns may apply in other ecosystems subject to changing climate patterns.


Assuntos
Mudança Climática , Ecossistema , Alaska , Animais , Clima , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA