Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 125(4): 691-700, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31956911

RESUMO

BACKGROUND AND AIMS: The success of invasive plants can be attributed to many traits including the ability to adapt to variable environmental conditions. Whether by adaptation, acclimation or phenotypic plasticity, these plants often increase their resource-use efficiency and, consequently, their fitness. The goal of this study was to examine the hydraulic and eco-physiological attributes of sun and shade populations of Pteridium aquilinum, a weedy fern, to determine whether the presence of vessels and other hydraulic attributes affects its success under a variety of light conditions. METHODS: Hydraulic traits such as cavitation resistance, hydraulic conductivity, photosynthesis and water potential at turgor loss point were measured on fronds from sun and shade populations. Anatomical and structural traits such as conduit diameter and length, stomatal density and vein density were also recorded. Diurnal measures of leaf water potential and stomatal conductance complement these data. KEY RESULTS: Gas exchange was nearly double in the sun plants, as was water-use efficiency, leaf-specific conductivity, and stomatal and vein density. This was largely achieved by a decrease in leaf area, coupled with higher xylem content. There was no significant difference in petiole cavitation resistance between the sun and shade leaves, nor in xylem-specific conductivity. Hydraulic conduit diameters were nearly equivalent in the two leaf types. CONCLUSIONS: Shifts in leaf area and xylem content allow P. aquilinum to occupy habitats with full sun, and to adjust its physiology accordingly. High rates of photosynthesis explain in part the success of this fern in disturbed habitats, although no change was observed in intrinsic xylem qualities such as cavitation resistance or conduit length. This suggests that P. aquilinum is constrained by its fundamental body plan, in contrast to seed plants, which show greater capacity for hydraulic adjustment.


Assuntos
Pteridium , Aclimatação , Fotossíntese , Folhas de Planta , Água , Xilema
2.
Glob Chang Biol ; 23(10): 4280-4293, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28426175

RESUMO

Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large-scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem-P50 ), leaf turgor loss point (TLP), cellular osmotic potential (πo ), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought-tolerant versus drought-intolerant based on observed mortality rates, and subdivided into early- versus late-successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem-P50 , TLP, and πo , but not ε, occurred at significantly higher water potentials for the drought-intolerant PFT compared to the drought-tolerant PFT; however, there were no significant differences between the early- and late-successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density-a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought-tolerant and drought-intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry-season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co-occuring drought-tolerant and drought-intolerant tropical tree species promises to facilitate a much-needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.


Assuntos
Mudança Climática , Secas , Floresta Úmida , Brasil , Folhas de Planta , Árvores , Clima Tropical , Água , Xilema
3.
New Phytol ; 210(1): 122-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26660879

RESUMO

The understory of the redwood forests of California's coast harbors perennial ferns, including Polystichum munitum and Dryopteris arguta. Unusual for ferns, these species are adapted to the characteristic Mediterranean-type dry season, but the mechanisms of tolerance have not been studied. The water relations of P. munitum and D. arguta were surveyed for over a year, including measures of water potential (Ψ), stomatal conductance (gs) and frond stipe hydraulic conductivity (K). A dehydration and re-watering experiment on potted P. munitum plants corroborated the field data. The seasonal Ψ varied from 0 to below -3 MPa in both species, with gs and K generally tracking Ψ; the loss of K rarely exceeded 80%. Quantile regression analysis showed that, at the 0.1 quantile, 50% of K was lost at -2.58 and -3.84 MPa in P. munitum and D. arguta, respectively. The hydraulic recovery of re-watered plants was attributed to capillarity. The seasonal water relations of P. munitum and D. arguta are variable, but consistent with laboratory-based estimates of drought tolerance. Hydraulic and Ψ recovery following rain allows perennial ferns to survive severe drought, but prolonged water deficit, coupled with insect damage, may hamper frond survival. The legacy effects of drought on reproductive capacity and community dynamics are unknown.


Assuntos
Secas , Gleiquênias/fisiologia , Estações do Ano , Água/metabolismo , California , Estômatos de Plantas/fisiologia , Pressão de Vapor
4.
Plant Physiol ; 164(4): 1649-60, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501002

RESUMO

Cavitation has long been recognized as a key constraint on the structure and functional integrity of the xylem. Yet, recent results call into question how well we understand cavitation in plants. Here, we consider embolism formation in angiosperms at two scales. The first focuses on how air-seeding occurs at the level of pit membranes, raising the question of whether capillary failure is an appropriate physical model. The second addresses methodological uncertainties that affect our ability to infer the formation of embolism and its reversal in plant stems. Overall, our goal is to open up fresh perspectives on the structure-function relationships of xylem.


Assuntos
Fenômenos Fisiológicos Vegetais , Xilema/fisiologia , Ar , Ritmo Circadiano/fisiologia , Membranas/fisiologia , Modelos Biológicos , Xilema/anatomia & histologia
5.
Plant Physiol ; 165(4): 1557-1565, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948828

RESUMO

Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to -1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than -3 MPa. Declines in Kleaf between -2 and -3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue.

6.
Plant Cell Environ ; 36(11): 1938-49, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23701011

RESUMO

We investigated the common assumption that severing stems and petioles under water preserves the hydraulic continuity in the xylem conduits opened by the cut when the xylem is under tension. In red maple and white ash, higher percent loss of conductivity (PLC) in the afternoon occurred when the measurement segment was excised under water at native xylem tensions, but not when xylem tensions were relaxed prior to sample excision. Bench drying vulnerability curves in which measurement samples were excised at native versus relaxed tensions showed a dramatic effect of cutting under tension in red maple, a moderate effect in sugar maple, and no effect in paper birch. We also found that air injection of cut branches (red and sugar maple) at pressures of 0.1 and 1.0 MPa resulted in PLC greater than predicted from vulnerability curves for samples cut 2 min after depressurization, with PLC returning to expected levels for samples cut after 75 min. These results suggest that sampling methods can generate PLC patterns indicative of repair under tension by inducing a degree of embolism that is itself a function of xylem tensions or supersaturation of dissolved gases (air injection) at the moment of sample excision. Implications for assessing vulnerability to cavitation and levels of embolism under field conditions are discussed.


Assuntos
Gases/metabolismo , Xilema/fisiologia , Acer/fisiologia , Ar , Betula/fisiologia , Ritmo Circadiano/fisiologia , Pressão , Árvores/fisiologia , Água
7.
J Exp Bot ; 64(8): 2321-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23585669

RESUMO

Trunks of large trees play an important role in whole-plant water balance but technical difficulties have limited most hydraulic research to small stems, leaves, and roots. To investigate the dynamics of water-related processes in tree trunks, such as winter embolism refilling, xylem hydraulic vulnerability, and water storage, volumetric water content (VWC) in the main stem was monitored continuously using frequency domain moisture sensors in adult Betula papyrifera trees from early spring through the beginning of winter. An air injection technique was developed to estimate hydraulic vulnerability of the trunk xylem. Trunk VWC increased in early spring and again in autumn, concurrently with root pressure during both seasons. Diurnal fluctuations and a gradual decrease in trunk VWC through the growing season were observed, which, in combination with VWC increase after significant rainfall events and depletion during periods of high water demand, indicate the importance of stem water storage in both short- and long-term water balance. Comparisons between the trunk air injection results and conventional branch hydraulic vulnerability curves showed no evidence of 'vulnerability segmentation' between the main stem and small branches in B. papyrifera. Measurements of VWC following air injection, together with evidence from air injection and xylem dye perfusion, indicate that embolized vessels can be refilled by active root pressure but not in the absence of root pressure. The precise, continuous, and non-destructive measurement of wood water content using frequency domain sensors provides an ideal way to probe many hydraulic processes in large tree trunks that are otherwise difficult to investigate.


Assuntos
Caules de Planta/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Betula/fisiologia , Radiação Eletromagnética , Raízes de Plantas/fisiologia , Chuva , Estações do Ano , Água/análise , Água/metabolismo , Madeira/química
8.
PLoS One ; 15(4): e0230868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240222

RESUMO

California's coastal climate is characterized by rainy winters followed by a dry summer season that is supplemented by frequent fog. While rising temperatures and drought caused massive tree mortality in central California during the 2011-2015 extreme drought, dying trees were less common in the central coast region. We hypothesized that cooler, maritime-ameliorated temperatures reduced the effects of drought stress on coastal vegetation. To test this, weekly measurements of water potential and stomatal conductance were made on two coast evergreen tree species, Arbutus menziesii and Quercus agrifolia, throughout the summer 2014 dry season. Water potential remained generally constant during this period but stomatal conductance declined in both species as the dry season progressed. Species' resistance to embolism was determined using the centrifuge method, and showed Q. agrifolia to be more vulnerable to embolism than A. menziesii. The stem vulnerability curves were consistent with species' seasonal water relations as well as their anatomy; the ring-porous Q. agrifolia had substantially larger conduits than the diffuse-porous A. menziesii. Leaf turgor loss points differed significantly as did other pressure-volume parameters but these data were consistent with the trees' seasonal water relations. Overall, the two species appear to employ differing water use strategies; A. menziesii is more profligate in its water use, while Q. agrifolia is more conservative, with a narrower safety margin against drought-induced loss of xylem transport capacity. Despite the extended drought, these species exhibited neither branch die-back nor any obvious symptoms of pronounced water-stress during the study period, implying that the maritime climate of California's central coast may buffer the local vegetation against the severe effects of prolonged drought.


Assuntos
Desidratação/metabolismo , Ericaceae/metabolismo , Quercus/metabolismo , California , Clima , Secas , Ecossistema , Microclima , Folhas de Planta/metabolismo , Estações do Ano , Temperatura , Árvores/metabolismo , Água , Xilema/metabolismo
9.
Front Plant Sci ; 9: 197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563920

RESUMO

Herbaceous plants rely on a combination of turgor, ground tissues and geometry for mechanical support of leaves and stems. Unlike most angiosperms however, ferns employ a sub-dermal layer of fibers, known as a hypodermal sterome, for support of their leaves. The sterome is nearly ubiquitous in ferns, but nothing is known about its role in leaf biomechanics. The goal of this research was to characterize sterome attributes in ferns that experience a broad range of mechanical stresses, as imposed by their aquatic, xeric, epiphytic, and terrestrial niches. Members of the Pteridaceae meet this criteria well. The anatomical and functional morphometrics along with published values of tissue moduli were used to model petiole flexural rigidity and susceptibility to buckling in 20 species of the Pteridaceae. Strong allometric relationships were observed between sterome thickness and leaf size, with the sterome contributing over 97% to petiole flexural rigidity. Surprisingly, the small-statured cheilanthoid ferns allocated the highest fraction of their petiole to the sterome, while large leaves exploited aspects of geometry (second moment of area) to achieve bending resistance. This pattern also revealed an economy of function in which increasing sterome thickness was associated with decreasing fiber cell reinforcement, and fiber wall fraction. Lastly, strong petioles were associated with durable leaves, as approximated by specific leaf area. This study reveals meaningful patterns in fern leaf biomechanics that align with species leaf size, sterome attributes and life-history strategy.

10.
Tree Physiol ; 26(6): 689-701, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16510385

RESUMO

We tested the hypothesis that greater cavitation resistance correlates with less total inter-vessel pit area per vessel (the pit area hypothesis) and evaluated a trade-off between cavitation safety and transport efficiency. Fourteen species of diverse growth form (vine, ring- and diffuse-porous tree, shrub) and family affinity were added to published data predominately from the Rosaceae (29 species total). Two types of vulnerability-to-cavitation curves were found. Ring-porous trees and vines showed an abrupt drop in hydraulic conductivity with increasing negative pressure, whereas hydraulic conductivity in diffuse-porous species generally decreased gradually. The ring-porous type curve was not an artifact of the centrifuge method because it was obtained also with the air-injection technique. A safety versus efficiency trade-off was evident when curves were compared across species: for a given pressure, there was a limited range of optimal vulnerability curves. The pit area hypothesis was supported by a strong relationship (r2 = 0.77) between increasing cavitation resistance and diminishing pit membrane area per vessel (A(P)). Small A(P) was associated with small vessel surface area and hence narrow vessel diameter (D) and short vessel length (L)--consistent with an increase in vessel flow resistance with cavitation resistance. This trade-off was amplified at the tissue level by an increase in xylem/vessel area ratio with cavitation resistance. Ring-porous species were more efficient than diffuse-porous species on a vessel basis but not on a xylem basis owing to higher xylem/vessel area ratios in ring-porous anatomy. Across four orders of magnitude, lumen and end-wall resistivities maintained a relatively tight proportionality with a near-optimal mean of 56% of the total vessel resistivity residing in the end-wall. This was consistent with an underlying scaling of L to D(3/2) across species. Pit flow resistance did not increase with cavitation safety, suggesting that cavitation pressure was not related to mean pit membrane porosity.


Assuntos
Magnoliopsida/anatomia & histologia , Xilema/anatomia & histologia , Transporte Biológico , Magnoliopsida/fisiologia , Modelos Biológicos , Transpiração Vegetal , Água/metabolismo , Xilema/fisiologia
11.
Funct Plant Biol ; 41(1): 37-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480964

RESUMO

We tested the hypothesis that an age-dependent reduction in leaf hydraulic conductance (Kleaf) influences the timing of leaf senescence via limitation of the stomatal aperture on xylem compound delivery to leaves of tomato (Solanum lycopersicum L.), the tropical trees Anacardium excelsum Kunth, Pittoniotis trichantha Griseb, and the temperate trees Acer saccharum Marsh. and Quercus rubra L. The onset of leaf senescence was preceded by a decline in Kleaf in tomato and the tropical trees, but not in the temperate trees. Age-dependent changes in Kleaf in tomato were driven by a reduction in leaf vein density without a proportional increase in the xylem hydraulic supply. A decline in stomatal conductance accompanied Kleaf reduction with age in tomato but not in tropical and temperate tree species. Experimental manipulations that reduce the flow of xylem-transported compounds into leaves with open stomata induced early leaf senescence in tomato and A. excelsum, but not in P. trichantha, A. saccharum and Q. rubra leaves. We propose that in tomato, a reduction in Kleaf limits the delivery of xylem-transported compounds into the leaves, thus making them vulnerable to senescence. In the tropical evergreen tree A. excelsum, xylem-transported compounds may play a role in signalling the timing of senescence but are not under leaf hydraulic regulation; leaf senescence in the deciduous trees A. trichanta, A. saccharum and Q. rubra is not influenced by leaf vascular transport.

12.
Plant Cell Environ ; 29(8): 1618-28, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16898022

RESUMO

Wood structure and function of juvenile wood from 18 conifer species from four conifer families (Araucariaceae, Cupressaceae, Pinaceae and Podocarpaceae) were examined for a trade-off between wood reinforcement and hydraulic efficiency. Wood density and tracheid 'thickness-to-span' ratio were used as anatomical proxies for mechanical properties. The thickness:span represented the ratio of tracheid double wall thickness to lumen diameter. Hydraulic resistivity (R) of tracheids on a cross-sectional area basis (RCA) increased over 50-fold with increasing density and thickness:span, implying a strength versus efficiency conflict. The conflict arose because density and thickness:span were increased by narrowing tracheid diameter rather than by thickening walls, which may be developmentally difficult. In the Pinaceae and Cupressaceae species, density and thickness:span correlated strongly with protection from drought-induced embolism, suggesting that mechanical strength was required in part to withstand tracheid collapse by negative sap pressure. These species showed a corresponding trade-off between increasing RCA and embolism protection. In contrast, species of Podocarpaceae and Araucariaceae were overbuilt for their embolism protection and were hydraulically inefficient, having greater density, thickness:span and RCA, none of which were correlated with vulnerability to embolism.


Assuntos
Traqueófitas/metabolismo , Água/metabolismo , Fenômenos Biomecânicos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Traqueófitas/anatomia & histologia , Traqueófitas/fisiologia
13.
Am J Bot ; 93(9): 1265-73, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21642190

RESUMO

Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.

14.
Science ; 310(5756): 1924, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16373568

RESUMO

The unicellular conifer tracheid should have greater flow resistance per length (resistivity) than the multicellular angiosperm vessel, because its high-resistance end-walls are closer together. However, tracheids and vessels had comparable resistivities for the same diameter, despite tracheids being over 10 times shorter. End-wall pits of tracheids averaged 59 times lower flow resistance on an area basis than vessel pits, owing to the unique torus-margo structure of the conifer pit membrane. The evolution of this membrane was as hydraulically important as that of vessels. Without their specialized pits, conifers would have 38 times the flow resistance, making conifer-dominated ecosystems improbable in an angiosperm world.


Assuntos
Traqueófitas/fisiologia , Adaptação Fisiológica , Evolução Biológica , Transporte Biológico , Magnoliopsida/fisiologia , Membranas/fisiologia , Estruturas Vegetais/fisiologia , Traqueófitas/anatomia & histologia , Árvores/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA