Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(7): 1217-1241, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675825

RESUMO

GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.


Assuntos
Transtornos do Neurodesenvolvimento , Receptores de AMPA , Estudos de Coortes , Heterozigoto , Humanos , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética
2.
Ann Hum Genet ; 88(1): 45-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37771269

RESUMO

Most mammalian cells have a single primary cilium that acts as a signalling hub in mediating cellular functions. However, little is known about the mechanisms that result in aberrant supernumerary primary cilia per cell. In this study, we re-analysed a previously published whole-genome siRNA-based reverse genetic screen for genes mediating ciliogenesis to identify knockdowns that permit multi-ciliation. We identified siRNA knockdowns that caused significant formation of supernumerary cilia, validated candidate hits in different cell-lines and confirmed that RACGAP1, a component of the centralspindlin complex, was the strongest candidate hit at the whole-genome level. Following loss of RACGAP1, mother centrioles were specified correctly prior to ciliogenesis and the cilia appeared normal. Live cell imaging revealed that increased cilia incidence was caused by cytokinesis failure which led to the formation of multinucleate cells with supernumerary cilia. This suggests that the signalling mechanisms for ciliogenesis are unable to identify supernumerary centrosomes and therefore allow ciliation of duplicated centrosomes as if they were in a new diploid daughter cell. These results, demonstrating that aberrant ciliogenesis is de-coupled from cell cycle regulation, have functional implications in diseases marked by centrosomal amplification.


Assuntos
Cílios , Citocinese , Proteínas Ativadoras de GTPase , Animais , Humanos , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/genética , Cílios/metabolismo , Mamíferos/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
3.
Clin Genet ; 103(3): 330-334, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36273371

RESUMO

Ciliopathies may be classed as primary or motile depending on the underlying ciliary defect and are usually considered distinct clinical entities. Primary ciliopathies are associated with multisystem syndromes typically affecting the brain, kidney, and eye, as well as other organ systems such as the liver, skeleton, auditory system, and metabolism. Motile ciliopathies are a heterogenous group of disorders with defects in specialised motile ciliated tissues found within the lung, brain, and reproductive system, and are associated with primary ciliary dyskinesia, bronchiectasis, infertility and rarely hydrocephalus. Primary and motile cilia share defined core ultra-structures with an overlapping proteome, and human disease phenotypes can reflect both primary and motile ciliopathies. CEP164 encodes a centrosomal distal appendage protein vital for primary ciliogenesis. Human CEP164 mutations are typically described in patients with nephronophthisis-related primary ciliopathies but have also been implicated in motile ciliary dysfunction. Here we describe a patient with an atypical motile ciliopathy phenotype and biallelic CEP164 variants. This work provides further evidence that CEP164 mutations can contribute to both primary and motile ciliopathy syndromes, supporting their functional and clinical overlap, and informs the investigation and management of CEP164 ciliopathy patients.


Assuntos
Ciliopatias , Humanos , Síndrome , Ciliopatias/genética , Proteínas/genética , Rim , Mutação , Cílios/genética
4.
J Med Genet ; 59(12): 1151-1164, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35764379

RESUMO

BACKGROUND: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS: We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION: Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Humanos , Antígenos de Neoplasias , Síndrome de Bardet-Biedl/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Genótipo , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Medicina Estatal , Genoma Humano
5.
J Med Genet ; 59(8): 737-747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34716235

RESUMO

BACKGROUND: Primary ciliopathies represent a group of inherited disorders due to defects in the primary cilium, the 'cell's antenna'. The 100,000 Genomes Project was launched in 2012 by Genomics England (GEL), recruiting National Health Service (NHS) patients with eligible rare diseases and cancer. Sequence data were linked to Human Phenotype Ontology (HPO) terms entered by recruiting clinicians. METHODS: Eighty-three prescreened probands were recruited to the 100,000 Genomes Project suspected to have congenital malformations caused by ciliopathies in the following disease categories: Bardet-Biedl syndrome (n=45), Joubert syndrome (n=14) and 'Rare Multisystem Ciliopathy Disorders' (n=24). We implemented a bespoke variant filtering and analysis strategy to improve molecular diagnostic rates for these participants. RESULTS: We determined a research molecular diagnosis for n=43/83 (51.8%) probands. This is 19.3% higher than previously reported by GEL (n=27/83 (32.5%)). A high proportion of diagnoses are due to variants in non-ciliopathy disease genes (n=19/43, 44.2%) which may reflect difficulties in clinical recognition of ciliopathies. n=11/83 probands (13.3%) had at least one causative variant outside the tiers 1 and 2 variant prioritisation categories (GEL's automated triaging procedure), which would not be reviewed in standard 100,000 Genomes Project diagnostic strategies. These include four structural variants and three predicted to cause non-canonical splicing defects. Two unrelated participants have biallelic likely pathogenic variants in LRRC45, a putative novel ciliopathy disease gene. CONCLUSION: These data illustrate the power of linking large-scale genome sequence to phenotype information. They demonstrate the value of research collaborations in order to maximise interpretation of genomic data.


Assuntos
Anormalidades Múltiplas , Ciliopatias , Anormalidades do Olho , Doenças Renais Císticas , Anormalidades Múltiplas/genética , Ciliopatias/diagnóstico , Ciliopatias/genética , Ciliopatias/patologia , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , Fenótipo , Medicina Estatal
6.
Eur Respir J ; 60(2)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34996831

RESUMO

BACKGROUND: Severe asthma is associated with multiple comorbidities, including gastro-oesophageal reflux disease (GORD), which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux. METHODS: We developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH and bile acids using a multiple challenge protocol (MCP-PAB). In addition, we analysed bronchial biopsies and undertook RNA sequencing of bronchial brushings from controls and severe asthmatics without or with GORD. RESULTS: Exposure of BECs to the MCP-PAB caused structural disruption, increased permeability, interleukin (IL)-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses. CONCLUSIONS AND CLINICAL IMPLICATION: By affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


Assuntos
Asma , Refluxo Gastroesofágico , Brônquios/patologia , Epitélio/metabolismo , Refluxo Gastroesofágico/complicações , Humanos , Qualidade de Vida , Mucosa Respiratória/metabolismo
7.
Eur Respir J ; 60(5)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35728977

RESUMO

BACKGROUND: Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS: This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS: Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS: PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.


Assuntos
Bronquiectasia , Transtornos da Motilidade Ciliar , Ciliopatias , Síndrome de Kartagener , Humanos , Mutação , Bronquiectasia/diagnóstico , Bronquiectasia/genética , Cílios , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/genética , Ciliopatias/complicações , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética
8.
Hum Genet ; 140(4): 593-607, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33095315

RESUMO

Ciliopathies are a broad range of inherited developmental and degenerative diseases associated with structural or functional defects in motile or primary non-motile cilia. There are around 200 known ciliopathy disease genes and whilst genetic testing can provide an accurate diagnosis, 24-60% of ciliopathy patients who undergo genetic testing do not receive a genetic diagnosis. This is partly because following current guidelines from the American College of Medical Genetics and the Association for Molecular Pathology, it is difficult to provide a confident clinical diagnosis of disease caused by missense or non-coding variants, which account for more than one-third of cases of disease. Mutations in PRPF31 are the second most common cause of the degenerative retinal ciliopathy autosomal dominant retinitis pigmentosa. Here, we present a high-throughput high-content imaging assay providing quantitative measure of effect of missense variants in PRPF31 which meets the recently published criteria for a baseline standard in vitro test for clinical variant interpretation. This assay utilizes a new PRPF31+/- human retinal cell line generated using CRISPR gene editing to provide a stable cell line with significantly fewer cilia in which novel missense variants are expressed and characterised. We show that high-content imaging of cells expressing missense variants in a ciliopathy gene on a null background can allow characterisation of variants according to the cilia phenotype. We hope that this will be a useful tool for clinical characterisation of PRPF31 variants of uncertain significance, and can be extended to variant classification in other ciliopathies.


Assuntos
Sistemas CRISPR-Cas , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Diagnóstico por Imagem/métodos , Proteínas do Olho/genética , Linhagem Celular , Células Cultivadas , Edição de Genes , Técnicas de Inativação de Genes , Guias como Assunto , Processamento de Imagem Assistida por Computador , Mutação de Sentido Incorreto , Retina/diagnóstico por imagem , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/genética , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/genética
9.
Genet Med ; 22(12): 2041-2051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32753734

RESUMO

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Assuntos
Síndrome de Ellis-Van Creveld , Degeneração Retiniana , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Éxons , Humanos , Mutação , Linhagem , Retina , Degeneração Retiniana/genética
10.
Exp Eye Res ; 192: 107950, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014492

RESUMO

Pathogenic variants in pre-messenger RNA (pre-mRNA) splicing factor 31, PRPF31, are the second most common genetic cause of autosomal dominant retinitis pigmentosa (adRP) in most populations. This remains a completely untreatable and incurable form of blindness, and it can be difficult to predict the clinical course of disease. In order to design appropriate targeted therapies, a thorough understanding of the genetics and molecular mechanism of this disease is required. Here, we present the structure of the PRPF31 gene and PRPF31 protein, current understanding of PRPF31 protein function and the full spectrum of all reported clinically relevant variants in PRPF31. We delineate the correlation between specific PRPF31 genotype and RP phenotype, suggesting that, except in cases of complete gene deletion or large-scale deletions, dominant negative effects contribute to phenotype as well as haploinsufficiency. This has important impacts on design of targeted therapies, particularly the feasibility of gene augmentation as a broad approach for treatment of PRPF31-associated RP. We discuss other opportunities for therapy, including antisense oligonucleotide therapy and gene-independent approaches and offer future perspectives on treatment of this form of RP.


Assuntos
Proteínas do Olho/genética , Terapia Genética , Mutação/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Análise Mutacional de DNA , Eletrorretinografia , Feminino , Estudos de Associação Genética , Humanos , Masculino , Oligonucleotídeos Antissenso , Reação em Cadeia da Polimerase , Splicing de RNA
11.
J Mater Sci Mater Med ; 29(8): 122, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30032456

RESUMO

There is an incentive to functionalise hydroxyapatite (HA) for orthopaedic implant use with bioactive agents to encourage superior integration of the implants into host bone. One such agent is (3S) 1-fluoro-3-hydroxy-4-(oleoyloxy) butyl-1-phosphonate (FHBP), a phosphatase-resistant lysophosphatidic acid (LPA) analogue. We investigated the effect of an FHBP-HA coating on the maturation of human (MG63) osteoblast-like cells. Optimal coating conditions were identified and cell maturation on modified and unmodified, control HA surfaces was assessed. Stress tests were performed to evaluate coating survivorship after exposure to mechanical and thermal insults that are routinely encountered in the clinical environment. MG63 maturation was found to be three times greater on FHBP-modified HA compared to controls (p < 0.0001). There was no significant loss of coating bioactivity after autoclaving (P = 0.9813) although functionality declined by 67% after mechanical cleaning and reuse (p < 0.0001). The bioactivity of modified disks was significantly greater than that of controls following storage for up to six months (p < 0.001). Herein we demonstrate that HA can be functionalised with FHBP in a facile, scalable manner and that this novel surface has the capacity to enhance osteoblast maturation. Improving the biological performance of HA in a bone regenerative setting could be realised through the simple conjugation of bioactive LPA species in the future. Depicted is a stylised summary of hydroxyapatite (HA) surface modification using an analogue of lysophosphatidic acid, FHBP. a HA surfaces are simply steeped in an aqueous solution of 2 µM FHBP. b The polar head group of some FHBP molecules react with available hydroxyl residues at the mineral surfaces forming robust HA-O-P bonds leaving acyl chain extensions perpendicular to the HA surface. These fatty acyl chains provide points of integration for other FHBP molecules to facilitate their self-assembly. This final surface finish enhanced the human osteoblast maturation response to calcitriol, the active vitamin D3 metabolite.


Assuntos
Materiais Revestidos Biocompatíveis/química , Durapatita/química , Fluoretos/química , Organofosfonatos/química , Fosfatase Alcalina/química , Regeneração Óssea , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Lisofosfolipídeos/química , Teste de Materiais , Osseointegração , Osteoblastos/citologia , Osteogênese , Próteses e Implantes , Análise de Sequência de RNA , Estresse Mecânico , Propriedades de Superfície , Titânio/química
13.
J Cell Sci ; 128(24): 4550-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546361

RESUMO

To investigate the contribution of ion channels to ciliogenesis, we carried out a small interfering RNA (siRNA)-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles regulate renal ciliogenesis; KCNQ1-p.R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1-siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function of KCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies, which might suggest future therapeutic approaches.


Assuntos
Túbulos Renais Coletores/metabolismo , Canais de Potássio/metabolismo , Animais , Linhagem Celular , Cílios/genética , Cílios/metabolismo , Humanos , Túbulos Renais Coletores/patologia , Camundongos , Canais de Potássio/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
14.
Development ; 141(20): 3966-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25294941

RESUMO

Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmin(gpg6/gpg6), Atmin(H210Q/H210Q) and Dynll1(GT/GT), revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1(GT/GT) embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.


Assuntos
Cílios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Fatores de Transcrição/fisiologia , Animais , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas do Citoplasma , Dano ao DNA , Dineínas/metabolismo , Marcadores Genéticos , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Hum Mol Genet ; 22(7): 1358-72, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23283079

RESUMO

The ciliopathies are a group of heterogeneous diseases with considerable variations in phenotype for allelic conditions such as Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS) even at the inter-individual level within families. In humans, mutations in TMEM67 (also known as MKS3) cause both MKS and JBTS, with TMEM67 encoding the orphan receptor meckelin (TMEM67) that localizes to the ciliary transition zone. We now describe the Tmem67(tm1(Dgen/H)) knockout mouse model that recapitulates the brain phenotypic variability of these human ciliopathies, with categorization of Tmem67 mutant animals into two phenotypic groups. An MKS-like incipient congenic group (F6 to F10) manifested very variable neurological features (including exencephaly, and frontal/occipital encephalocele) that were associated with the loss of primary cilia, diminished Shh signalling and dorsalization of the caudal neural tube. The 'MKS-like' group also had high de-regulated canonical Wnt/ß-catenin signalling associated with hyper-activated Dishevelled-1 (Dvl-1) localized to the basal body. Conversely, a second fully congenic group (F > 10) had less variable features pathognomonic for JBTS (including cerebellar hypoplasia), and retention of abnormal bulbous cilia associated with mild neural tube ventralization. The 'JBTS-like' group had de-regulated low levels of canonical Wnt signalling associated with the loss of Dvl-1 localization to the basal body. Our results suggest that modifier alleles partially determine the variation between MKS and JBTS, implicating the interaction between Dvl-1 and meckelin, or other components of the ciliary transition zone. The Tmem67(tm1(Dgen/H)) line is unique in modelling the variable expressivity of phenotypes in these two ciliopathies.


Assuntos
Doenças Cerebelares/metabolismo , Transtornos da Motilidade Ciliar/metabolismo , Encefalocele/metabolismo , Anormalidades do Olho/metabolismo , Proteínas Hedgehog/metabolismo , Doenças Renais Císticas/metabolismo , Proteínas de Membrana/genética , Doenças Renais Policísticas/metabolismo , Via de Sinalização Wnt , Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Padronização Corporal/genética , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Cerebelo/anormalidades , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Modelos Animais de Doenças , Proteínas Desgrenhadas , Encefalocele/genética , Encefalocele/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Proteínas de Membrana/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Fenótipo , Fosfoproteínas/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Transporte Proteico , Retina/anormalidades , Retina/metabolismo , Retina/patologia , Retinose Pigmentar
16.
Dev Biol ; 377(1): 55-66, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23454480

RESUMO

Meckel-Gruber syndrome (MKS) is an embryonic lethal ciliopathy resulting from mutations in genes encoding proteins localising to the primary cilium. Mutations in the basal body protein MKS1 account for 7% of cases of MKS. The condition affects the development of multiple organs, including brain, kidney and skeleton. Here we present a novel Mks1(tm1a(EUCOMM)Wtsi) knockout mouse which accurately recapitulates the human condition, consistently developing pre-axial polydactyly, complex posterior fossa defects (including the Dandy-Walker malformation), and renal cystic dysplasia. TOPFlash Wnt reporter assays in mouse embryonic fibroblasts (MEFs) showed general de-regulated high levels of canonical Wnt/ß-catenin signalling in Mks1(-/-) cells. In addition to these signalling defects, we also observed ectopic high proliferation in the brain and kidney of mutant animals at mid- to late-gestation. The specific role of Mks1 in regulating cell proliferation was confirmed in Mks1 siRNA knockdown experiments which showed increased levels of proliferation after knockdown, an effect not seen after knockdown of other ciliopathy genes. We suggest that this is a result of the de-regulation of multiple signalling pathways (Wnt, mTOR and Hh) in the absence of functional Mks1. This novel model system offers insights into the role of MKS1 in Wnt signalling and proliferation, and the impact of deregulation of these processes on brain and kidney development in MKS, as well as expanding our understanding of the role of Mks1 in multiple signalling pathways.


Assuntos
Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Modelos Animais de Doenças , Encefalocele/metabolismo , Encefalocele/patologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Via de Sinalização Wnt , Animais , Western Blotting , Encéfalo/embriologia , Encéfalo/metabolismo , Encéfalo/patologia , Proliferação de Células , Transtornos da Motilidade Ciliar/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Encefalocele/genética , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hidrocefalia/embriologia , Hidrocefalia/patologia , Camundongos , Microftalmia/embriologia , Microftalmia/patologia , Doenças Renais Policísticas/genética , Proteínas/genética , Proteínas/metabolismo , Retinose Pigmentar
17.
Hum Mol Genet ; 21(6): 1272-86, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22121117

RESUMO

MKS3, encoding the transmembrane receptor meckelin, is mutated in Meckel-Gruber syndrome (MKS), an autosomal-recessive ciliopathy. Meckelin localizes to the primary cilium, basal body and elsewhere within the cell. Here, we found that the cytoplasmic domain of meckelin directly interacts with the actin-binding protein filamin A, potentially at the apical cell surface associated with the basal body. Mutations in FLNA, the gene for filamin A, cause periventricular heterotopias. We identified a single consanguineous patient with an MKS-like ciliopathy that presented with both MKS and cerebellar heterotopia, caused by an unusual in-frame deletion mutation in the meckelin C-terminus at the region of interaction with filamin A. We modelled this mutation and found it to abrogate the meckelin-filamin A interaction. Furthermore, we found that loss of filamin A by siRNA knockdown, in patient cells, and in tissues from Flna(Dilp2) null mouse embryos results in cellular phenotypes identical to those caused by meckelin loss, namely basal body positioning and ciliogenesis defects. In addition, morpholino knockdown of flna in zebrafish embryos significantly increases the frequency of dysmorphology and severity of ciliopathy developmental defects caused by mks3 knockdown. Our results suggest that meckelin forms a functional complex with filamin A that is disrupted in MKS and causes defects in neuronal migration and Wnt signalling. Furthermore, filamin A has a crucial role in the normal processes of ciliogenesis and basal body positioning. Concurrent with these processes, the meckelin-filamin A signalling axis may be a key regulator in maintaining correct, normal levels of Wnt signalling.


Assuntos
Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas Contráteis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Animais , Western Blotting , Transtornos da Motilidade Ciliar/genética , Proteínas Contráteis/antagonistas & inibidores , Proteínas Contráteis/genética , Feminino , Filaminas , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Fenótipo , RNA Interferente Pequeno/genética , Técnicas do Sistema de Duplo-Híbrido , Peixe-Zebra/embriologia
18.
Exp Cell Res ; 319(3): 161-72, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23059369

RESUMO

HHARI (also known as ARIH1) is an ubiquitin-protein ligase and is the cognate of the E2, UbcH7 (UBE2L3). To establish a functional role for HHARI in cellular proliferation processes, we performed a reverse genetics screen that identified n=86/522 (16.5%) ubiquitin conjugation components that have a statistically significant effect on cell proliferation, which included HHARI as a strong hit. We then produced and validated a panel of specific antibodies that establish HHARI as both a nuclear and cytoplasmic protein that is expressed in all cell types studied. HHARI was expressed at higher levels in nuclei, and co-localized with nuclear bodies including Cajal bodies (p80 coilin, NOPP140), PML and SC35 bodies. We confirmed reduced cellular proliferation after ARIH1 knockdown with individual siRNA duplexes, in addition to significantly increased levels of apoptosis, an increased proportion of cells in G2 phase of the cell cycle, and significant reductions in total cellular RNA levels. In head and neck squamous cell carcinoma biopsies, there are higher levels of HHARI expression associated with increased levels of proliferation, compared to healthy control tissues. We demonstrate that HHARI is associated with cellular proliferation, which may be mediated through its interaction with UbcH7 and modification of proteins in nuclear bodies.


Assuntos
Biomarcadores , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proliferação de Células , Corpos Enovelados/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Células Cultivadas , Corpos Enovelados/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Ligação Proteica , Homologia de Sequência , Ubiquitina-Proteína Ligases
19.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662826

RESUMO

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos Knockout
20.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37077557

RESUMO

Background: Diagnostic testing for primary ciliary dyskinesia (PCD) started in 2013 in Palestine. We aimed to describe the diagnostic, genetic and clinical spectrum of the Palestinian PCD population. Methods: Individuals with symptoms suggestive of PCD were opportunistically considered for diagnostic testing: nasal nitric oxide (nNO) measurement, transmission electron microscopy (TEM) and/or PCD genetic panel or whole-exome testing. Clinical characteristics of those with a positive diagnosis were collected close to testing including forced expiratory volume in 1 s (FEV1) Global Lung Index z-scores and body mass index z-scores. Results: 68 individuals had a definite positive PCD diagnosis, 31 confirmed by genetic and TEM results, 23 by TEM results alone, and 14 by genetic variants alone. 45 individuals from 40 families had 17 clinically actionable variants and four had variants of unknown significance in 14 PCD genes. CCDC39, DNAH11 and DNAAF11 were the most commonly mutated genes. 100% of variants were homozygous. Patients had a median age of 10.0 years at diagnosis, were highly consanguineous (93%) and 100% were of Arabic descent. Clinical features included persistent wet cough (99%), neonatal respiratory distress (84%) and situs inversus (43%). Lung function at diagnosis was already impaired (FEV1 z-score median -1.90 (-5.0-1.32)) and growth was mostly within the normal range (z-score mean -0.36 (-3.03-2.57). 19% individuals had finger clubbing. Conclusions: Despite limited local resources in Palestine, detailed geno- and phenotyping forms the basis of one of the largest national PCD populations globally. There was notable familial homozygosity within the context of significant population heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA