Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2409955121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190351

RESUMO

Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 µmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.


Assuntos
Antibacterianos , Ferro , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Ferro/química , Ferro/metabolismo , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Oligoquetos/metabolismo , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos , Nanocompostos/química
2.
Appl Environ Microbiol ; 90(7): e0086324, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899885

RESUMO

Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis. IMPORTANCE: Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.


Assuntos
Processos Autotróficos , Chromatiaceae , Ferro , Sulfetos , Enxofre , Sulfetos/metabolismo , Enxofre/metabolismo , Ferro/metabolismo , Chromatiaceae/metabolismo , Chromatiaceae/genética , Chromatiaceae/crescimento & desenvolvimento , Elétrons , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fotossíntese
3.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149882

RESUMO

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Assuntos
Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/efeitos adversos , Animais , Solo/química , Microplásticos/análise , Microplásticos/toxicidade , Gases de Efeito Estufa/análise , Nanopartículas/análise , Produtos Agrícolas/crescimento & desenvolvimento
4.
Environ Sci Technol ; 58(21): 9051-9060, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742946

RESUMO

Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.


Assuntos
Agricultura , Nanoestruturas , Imunidade Vegetal
5.
Environ Sci Technol ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174873

RESUMO

Nanoplastics (NPs) are widely detected in the atmosphere and are likely to be deposited on plant leaves. However, our understanding of their foliar uptake, translocation, and trophic transfer profiles is limited due to a lack of quantitative analytical tools to effectively probe mechanisms of action. Here, using synthesized deuterium (2H) stable isotope-labeled polystyrene nanoplastics (2H-PSNPs), the foliar accumulation and translocation of NPs in lettuce and the dynamics of NP transfer along a lettuce-snail terrestrial food chain were investigated. Raman imaging and scanning electron microscopy demonstrated that foliar-applied NPs aggregated on the leaf surface, entered the mesophyll tissue via the stomatal pathway, and eventually translocated to root tissues. Quantitative analysis showed that increasing levels of foliar exposure to 2H-PSNPs (0.1, 1, and 5 mg/L in spray solutions, equivalent to receiving 0.15, 1.5, and 7.5 µg/d of NPs per plant) enhanced NP accumulation in leaves, with concentrations ranging from 0.73 to 15.6 µg/g (dw), but only limited translocation (<5%) to roots. After feeding on 5 mg/L 2H-PSNP-contaminated lettuce leaves for 14 days, snails accumulated NPs at 0.33 to 10.7 µg/kg (dw), with an overall kinetic trophic transfer factor of 0.45, demonstrating trophic dilution in this food chain. The reduced ingestion rate of 3.18 mg/g/day in exposed snails compared to 6.43 mg/g/day can be attributed to the accumulation of 2H-PSNPs and elevated levels of chemical defense metabolites in the lettuce leaves, which decreased the palatability for snails and disrupted their digestive function. This study provides critical quantitative information on the characteristics of airborne NP bioaccumulation and the associated risks to terrestrial food chains.

6.
Environ Sci Technol ; 58(2): 1211-1222, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173352

RESUMO

Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.


Assuntos
Nanoestruturas , Solo , Solo/química , Glycine max , Molibdênio , Agricultura
7.
J Pediatr Hematol Oncol ; 46(2): e184-e187, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099690

RESUMO

Anaplastic lymphoma kinase ( ALK )-fusion sarcomas are rare part of the emerging theoretically targetable tyrosine kinase RAS::MAPK pathway fusion myopericytic-ovoid sarcomas. We report our clinicopathologic and treatment experience with an ALK fusion sarcoma. A novel ELKS/RAB6-interacting/CAST family member 1 - unaligned ALK fusion infiltrative nonmetastatic low-grade sarcoma of the right hand of a 15-month-old male was treated with crizotinib, an ALK tyrosine kinase inhibitor as oral monotherapy, inducing complete radiographic and clinical resolution by 10 months and sustained response now over 12 months after elective discontinuation. Crizotinib can successfully be used to treat unresectable novel ALK fusion sarcomas.


Assuntos
Neoplasias Pulmonares , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Masculino , Criança , Lactente , Crizotinibe/uso terapêutico , Quinase do Linfoma Anaplásico/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Sarcoma/tratamento farmacológico , Sarcoma/genética , Proteínas Tirosina Quinases/uso terapêutico , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias Pulmonares/patologia
8.
Plant Cell Rep ; 43(3): 64, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340214

RESUMO

KEY MESSAGE: This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.


Assuntos
Arsênio , Oryza , Radioisótopos , Oryza/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo
9.
J Environ Manage ; 362: 121316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838540

RESUMO

Given the increasing concern over Cd contamination of agricultural soils in China, reducing the availability of the toxic metal has become an important remedial strategy. However, the lack of a unified evaluation framework complicates the assessment of remediation efficiency of different practices. Here, we evaluated the general extraction method (GEM) of available Cd in nine typical soil types by comparing extraction agents, including CaCl2, EDTA, Mehlich-Ⅲ, HCl and DTPA. The safe grain concentration of different agricultural products from National Food Safety Standards Limits of Contaminants in Food (GB 2762-2022) was then applied to understand soil limited available Cd concentration based on dose-response curves. We also derived environmental risk threshold (HC5) values for Cd remediation in agricultural soils by constructing species sensitivity distribution (SSD) curves. The results showed that Mehlich-Ⅲ best predicted Cd accumulation in crops (with 76.5% of explanation of grain Cd) and was selected as the GEM of soil available Cd for subsequent analyses. The regression coefficient (R2) of dose-response curves fitting between Cd absorption in crop tissues and soil available Cd extracted by GEM based on 30 different crop species varied from 51.0% to 79.5%, and the derived limit concentration of soil available Cd based on standard GB 2762-2022 was 0.18-0.76 mg‧kg-1. An HC5 of 0.19 mg‧kg-1 was then calculated, meaning that a concentration of available Cd in agricultural soil below 0.19 mg‧kg-1 ensures that 95% of agricultural products meet the quality and safety requirements of standard GB 2762-2022. The prediction model was well verified in the field test, indicating that can correctly estimate the soil available Cd based on the content of Cd in plant. This study provides a robust scientific framework for deriving the risk threshold for Cd remediation in agricultural soils and could be quite useful for establishing soil remediation standards.


Assuntos
Agricultura , Cádmio , Recuperação e Remediação Ambiental , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , China , Solo/química , Recuperação e Remediação Ambiental/métodos , Produtos Agrícolas , População do Leste Asiático
10.
Plant Cell Physiol ; 63(12): 1840-1847, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36255098

RESUMO

The global increase in nanotechnology applications has been unprecedented and has now moved into the area of agriculture and food production. Applications with promising potential in sustainable agriculture include nanobiosensors, nanofertilizers, nanopesticides, nano-mediated remediation strategies for contaminated soils and nanoscale strategies to increase crop production and protection. Given this, the impact of nanomaterials/nanoparticles (NPs) on plant species needs to be thoroughly evaluated as this represents a critical interface between the biosphere and the environment. Importantly, phytohormones represent a critical class of biomolecules to plant health and productivity; however, the impact of NPs on these molecules is poorly understood. In addition, phytohormones, and associated pathways, are widely explored in agriculture to influence several biological processes for the improvement of plant growth and productivity under natural as well as stressed conditions. However, the impact of exogenous applications of phytohormones on NP-treated plants has not been explored. The importance of hormone signaling and cross-talk with other metabolic systems makes these biomolecules ideal candidates for a thorough assessment of NP impacts on plant species. This article presents a critical evaluation of the existing yet limited literature available on NP-phytohormone interactions in plants. In addition, the developing strategy of nano-enabled precision delivery of phytohormones via nanocarriers will be explored. Finally, directions for future research and critical knowledge gaps will be identified for this important aspect of nano-enabled agriculture.


Assuntos
Fenômenos Biológicos , Nanoestruturas , Reguladores de Crescimento de Plantas , Desenvolvimento Vegetal , Plantas , Hormônio do Crescimento
11.
J Clin Immunol ; 44(1): 27, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129328

RESUMO

Zeta-chain associated protein kinase 70 kDa (ZAP70) combined immunodeficiency (CID) is an autosomal recessive severe immunodeficiency that is characterized by abnormal T-cell receptor signaling. Children with the disorder typically present during the first year of life with diarrhea, failure to thrive, and recurrent bacterial, viral, or opportunistic infections. To date, the only potential cure is hematopoietic stem cell transplant (HSCT). The majority of described mutations causing disease occur in the homozygous state, though heterozygotes are reported without a clear understanding as to how the individual mutations interact to cause disease. This case describes an infant with novel ZAP-70 deficiency mutations involving the SH2 and kinase domains cured with allogeneic HSCT utilizing a reduced-intensity conditioning regimen and graft manipulation. We then were able to further elucidate the molecular signaling alterations imparted by these mutations that lead to altered immune function. In order to examine the effect of these novel compound ZAP70 heterozygous mutations on T cells, Jurkat CD4+ T cells were transfected with either wild type, or with individual ZAP70 R37G and A507T mutant constructs. Downstream TCR signaling events and protein localization results link these novel mutations to the expected immunological outcome as seen in the patient's primary cells. This study further characterizes mutations in the ZAP70 gene as combined immunodeficiency and the clinical phenotype.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Criança , Humanos , Lactente , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Mutação , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Transdução de Sinais , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/genética
12.
Small ; 19(2): e2205687, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382544

RESUMO

The use of nanofabricated materials is being explored for the potential in crop disease management. Chemically synthesized micronutrient nanoparticles (NPs) have been shown to reduce crop diseases; however, the potential of biogenic manganese NPs (bio-MnNPs) in disease control is unknown. Here, the potential and mechanism of bio-MnNPs in suppression of watermelon Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon) are reported. Bio-MnNPs are synthesized by cell-free cultural filtrate of a waterrmelon rhizosphere bacterial strain Bacillus megaterium NOM14, and are found spherical in shape with a size range of 27.0-65.7 nm. Application of bio-MnNPs at 100 µg mL-1 increases Mn content in watermelon roots/shoots and improves growth performance through enhancing multiple physiological processes, including antioxidative capacity. Bio-MnNPs at 100 µg mL-1 suppress Fusarium wilt through inhibiting colonization and invasive growth of Fon in watermelon roots/stems, and inhibit Fon vegetative growth, conidiation, conidial morphology, and cellular integrity. Bio-MnNPs potentiate watermelon systemic acquired resistance by triggering the salicylic acid signaling upon Fon infection, and reshape the soil microbial community by improving fungal diversity. These findings demonstrate that bio-MnNPs suppress watermelon Fusarium wilt by multiple ex planta and in planta mechanisms, and offer a promising nano-enabled strategy for the sustainable management of crop diseases.


Assuntos
Citrullus , Fusarium , Citrullus/microbiologia , Solo , Fusarium/fisiologia , Manganês , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
13.
Small ; 19(15): e2207136, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599658

RESUMO

The nano-enabled crop protecting agents have been emerging as a cost-effective, eco-friendly, and sustainable alternative to conventional chemical pesticides. Here, the antibacterial activity and disease-suppressive potential of biogenic copper nanoparticles (bio-CuNPs) against bacterial fruit blotch (BFB), caused by Acidovorax citrulli (Ac), in watermelon (Citrullus lanatus L.) is discussed. CuNPs are extracellularly biosynthesized using a locally isolated bacterial strain Bacillus altitudinis WM-2/2, and have spherical shapes of 29.11-78.56 nm. Various metabolites, such as alcoholic compounds, carboxylic acids, alkenes, aromatic amines, and halo compounds, stabilize bio-CuNPs. Foliar application of bio-CuNPs increases the Cu accumulation in shoots/roots (66%/27%), and promotes the growth performance of watermelon plants by improving fresh/dry weight (36%/39%), through triggering various imperative physiological and biochemical processes. Importantly, bio-CuNPs at 100 µg mL-1 significantly suppress watermelon BFB through balancing reactive oxygen species system, improving photosynthesis capacity, and modulating stomatal immunity. Bio-CuNPs show obvious antibacterial activity against Ac by inducing oxidative stress, biofilm inhibition, and cellular integrity disruption. These findings demonstrate that bio-CuNPs can suppress watermelon BFB through direct antibacterial activity and induction of active immune response in watermelon plants, and highlight the value of this approach as a powerful tool to increase agricultural production and alleviate food insecurity.


Assuntos
Citrullus , Citrullus/microbiologia , Frutas/microbiologia , Cobre , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia
14.
Environ Sci Technol ; 57(48): 19932-19941, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975618

RESUMO

Climate change-induced extreme weather events (heat, cold, drought, and flooding) will severely affect crop production. Increasing the resilience of crops to fluctuating environmental conditions is critically important. Here, we report that nanomaterials (NMs) with reactive oxygen species (ROS)-generating properties can be used as seed priming agents to simultaneously enhance the tolerance of maize seeds and seedlings to diverse and even multiple stresses. Maize seeds primed with 40 mg/L silver nanoparticles (AgNPs) exhibited accelerated seed germination and an increased germination rate, greater seedling vigor, and better seedling growth under drought (10% and 20% PEG), saline (50 and 100 mM NaCl), and cold (15 °C) stress conditions, indicating enhanced resilience to diverse stresses. Importantly, maize resistance to simultaneous multiple stresses (drought and cold, drought and salt, and salt and cold) was markedly enhanced. Under drought conditions, seed priming significantly boosted root hair density and length (17.3-82.7%), which enabled greater tolerance to water deficiency. RNA-seq analysis reveals that AgNPs seed priming induced a transcriptomic shift in maize seeds. Plant hormone signal transduction and MAPK signaling pathways were activated upon seed priming. Importantly, low-cost and environmentally friendly ROS-generating Fe-based NMs (Fe2O3 and Fe3O4 NPs) were also demonstrated to enhance the resistance of seeds and seedlings to drought, salt, and cold stresses. These findings demonstrate that a simple seed priming strategy can be used to significantly enhance the climate resilience of crops through modulated ROS homeostasis and that this approach could be a powerful nanoenabled tool for addressing worsening food insecurity.


Assuntos
Nanopartículas Metálicas , Zea mays , Espécies Reativas de Oxigênio/metabolismo , Zea mays/metabolismo , Nanopartículas Metálicas/toxicidade , Prata , Plântula/metabolismo , Germinação , Estresse Fisiológico , Cloreto de Sódio/farmacologia , Sementes/metabolismo
15.
Environ Sci Technol ; 57(26): 9773-9781, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37334664

RESUMO

Orthogonal techniques were used to track manganese nanoparticles (MnNPs) in Capsicum annuum L. leaf tissue and cell compartments and subsequently to explain the mechanism of uptake, translocation, and cellular interaction. C. annuum L was cultivated and foliarly exposed to MnNPs (100 mg/L, 50 mL/per leaf) before analysis by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) as well as dark-field hyperspectral and two-photon microscopy. We visualized the internalization of MnNP aggregates from the leaf surface and observed particle accumulation in the leaf cuticle and epidermis as well as spongy mesophyll and guard cells. These techniques enabled a description of how MnNPs cross different plant tissues as well as selectively accumulate and translocate in specific cells. We also imaged abundant fluorescent vesicles and vacuoles containing MnNPs, indicating likely induction of autophagy processes in C. annuum L., which is the bio-response upon storing or transforming the particles. These findings highlight the importance of utilizing orthogonal techniques to characterize nanoscale material fate and distribution with complex biological matrices and demonstrate that such an approach offers a significant mechanistic understanding that can inform both risk assessment and efforts aimed at applying nanotechnology to agriculture.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Manganês , Microscopia Eletrônica de Varredura , Autofagia
16.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471269

RESUMO

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Assuntos
Rotas de Resultados Adversos , Oligoquetos , Poluentes do Solo , Animais , Poluentes do Solo/toxicidade , Oligoquetos/metabolismo , Lipidômica , Molibdênio/toxicidade , Ecossistema , Solo
17.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
18.
Environ Sci Technol ; 57(19): 7547-7558, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37134233

RESUMO

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.


Assuntos
Nanopartículas , Níquel , Níquel/química , Glycine max , Nitrogênio , Solo
19.
Pestic Biochem Physiol ; 194: 105486, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532316

RESUMO

In this study, zinc and copper oxide nanoparticles (NPs) were synthesized using hemp (Cannabis sativa L.) leaves (ZnONP-HL and CuONP-HL), and their antifungal potential was assessed against Fusarium virguliforme in soybean (Glycine max L.). Hemp was selected because it is known to contain large quantities of secondary metabolites that can potentially enhance the reactivity of NPs through surface property modification. Synthesizing NPs with biologically derived materials allows to avoid the use of harsh and expensive synthetic reducing and capping agents. The ZnONP-HL and CuONP-HL showed average grain/crystallite size of 13.51 nm and 7.36 nm, respectively. The biologically synthesized NPs compared well with their chemically synthesized counterparts (ZnONP chem, and CuONP chem; 18.75 nm and 10.05 nm, respectively), confirming the stabilizing role of hemp-derived biomolecules. Analysis of the hemp leaf extract and functional groups that were associated with ZnONP-HL and CuONP-HL confirmed the presence of terpenes, flavonoids, and phenolic compounds. Biosynthesized NPs were applied on soybeans as bio-nano-fungicides against F. virguliforme via foliar treatments. ZnONP-HL and CuONP-HL at 200 µg/mL significantly (p < 0.05) increased (∼ 50%) soybean growth, compared to diseased controls. The NPs improved the nutrient (e.g., K, Ca, P) content and enhanced photosynthetic indicators of the plants by 100-200%. A 300% increase in the expression of soybean pathogenesis related GmPR genes encoding antifungal and defense proteins confirmed that the biosynthesized NPs enhanced disease resistance against the fungal phytopathogen. The findings from this study provide novel evidence of systemic suppression of fungal disease by nanobiopesticides, via promoting plant defense mechanisms.


Assuntos
Cannabis , Zinco , Nanopartículas Metálicas , Cannabis/metabolismo , Glycine max , Antifúngicos/metabolismo , Folhas de Planta/metabolismo
20.
Int J Phytoremediation ; 24(1): 12-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34000928

RESUMO

Silver nanoparticles (AgNPs) are particularly among the widely used nanomaterials in medicine, industry, and agriculture. The small size and large surface area of AgNPs and other nanomaterials result in their high reactivity in biological systems. To better understand the effects of AgNPs on plants at the molecular level, tomato (Lycopersicon esculentum L.) seedlings were exposed to 30 mg/L silver in the form of nanoparticle (AgNPs), ionic (AgNO3), or bulk (Ag0) in 50% Hoagland media for 7 days. The effects of silver on the expression of plant membrane transporters H+-ATPase, vacuolar type H+-ATPase (V-ATPase), and enzymes isocitrate dehydrogenase (IDH), and catalase in roots was assessed using RT-qPCR and immunofluorescence-confocal microscopy. We observed significantly higher expression of catalase in plants exposed to AgNPs (Fold of expression 1.1) and AgNO3 (Fold of expression 1.2) than the control group. The immunofluorescence imaging of the proteins confirmed the gene expression data; the expression of the enzyme catalase was upregulated 41, 216, and 770% higher than the control group in plants exposed to AgNPs, Ag0, and AgNO3, respectively. Exposure to AgnO3 resulted in the upregulation (fold of expression 1.2) of H+-ATPase and downregulation (fold of expression 0.7) of V-ATPase. A significant reduction in the expression of the redox-sensitive tricarboxylic cycle (TCA) enzyme mitochondrial IDH was observed in plants exposed to AgNPs (38%), AgNO3 (48%), or Ag0 (77%) compared to the control. This study shows that exposure to silver affects the expression of genes and protein involved in membrane transportation and oxidative response. The ionic form of silver had the most significant effect on the expression of genes and proteins compared to other forms of silver. The results from this study improve our understanding about the molecular effects of different forms of silver on important crop species. Novelty statementSilver nanoparticles released into the environment can be oxidized and be transformed into ionic form. Both the particulate and ionic forms of silver can be taken by plants and affect plants physiological and molecular responses. Despite the extensive research in this area, there is a scarce of information about the effects of silver nanoparticles on the expression of membrane transporters especially H+-ATPase involved in regulating cells' electrochemical charge, and the activity of enzymes involved in oxidative stress responses. This is a unique study that evaluates the expression of cellular proton transporters and enzymes of redox balance and energy metabolisms such as membrane transporters, H+-ATPase, and V-ATPases, and enzymes catalase and IDH. The results provide us valuable information about the impact of silver on plants at the molecular level by evaluating the expression of genes and proteins. Key MessageThe exposure of plants to silver as an environmental stressor affects the expression of genes and proteins involved in maintaining cell's electrochemical gradient (H+-ATPase, V-ATPase) and redox potential (IDH, catalase).


Assuntos
Nanopartículas Metálicas , Solanum lycopersicum , Biodegradação Ambiental , Solanum lycopersicum/genética , Prata/toxicidade , Nitrato de Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA