Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Biol Chem ; 296: 100520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684447

RESUMO

The retention of low-density lipoprotein (LDL) is a key process in the pathogenesis of atherosclerosis and largely mediated via smooth-muscle cell-derived extracellular proteoglycans including the glycosaminoglycan chains. Macrophages can also internalize lipids via complexes with proteoglycans. However, the role of polarized macrophage-derived proteoglycans in binding LDL is unknown and important to advance our understanding of the pathogenesis of atherosclerosis. We therefore examined the identity of proteoglycans, including the pendent glycosaminoglycans, produced by polarized macrophages to gain insight into the molecular basis for LDL binding. Using the quartz crystal microbalance with dissipation monitoring technique, we established that classically activated macrophage (M1)- and alternatively activated macrophage (M2)-derived proteoglycans bind LDL via both the protein core and heparan sulfate (HS) in vitro. Among the proteoglycans secreted by macrophages, we found perlecan was the major protein core that bound LDL. In addition, we identified perlecan in the necrotic core as well as the fibrous cap of advanced human atherosclerotic lesions in the same regions as HS and colocalized with M2 macrophages, suggesting a functional role in lipid retention in vivo. These findings suggest that macrophages may contribute to LDL retention in the plaque by the production of proteoglycans; however, their contribution likely depends on both their phenotype within the plaque and the presence of enzymes, such as heparanase, that alter the secreted protein structure.


Assuntos
Aterosclerose/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Aterosclerose/patologia , Células Cultivadas , Humanos , Macrófagos/citologia
2.
J Biol Chem ; 294(30): 11458-11472, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31175155

RESUMO

Mast cells represent a heterogeneous cell population that is well-known for the production of heparin and the release of histamine upon activation. Serglycin is a proteoglycan that within mast cell α-granules is predominantly decorated with the glycosaminoglycans heparin or chondroitin sulfate (CS) and has a known role in granule homeostasis. Heparanase is a heparin-degrading enzyme, is present within the α-granules, and contributes to granule homeostasis, but an equivalent CS-degrading enzyme has not been reported previously. In this study, using several approaches, including epitope-specific antibodies, immunohistochemistry, and EM analyses, we demonstrate that human HMC-1 mast cells produce the CS-degrading enzymes hyaluronidase-1 (HYAL1) and HYAL4. We observed that treating the two model CS proteoglycans aggrecan and serglycin with HYAL1 and HYAL4 in vitro cleaves the CS chains into lower molecular weight forms with nonreducing end oligosaccharide structures similar to CS stub neoepitopes generated after digestion with the bacterial lyase chondroitinase ABC. We found that these structures are associated with both the CS linkage region and with structures more distal toward the nonreducing end of the CS chain. Furthermore, we noted that HYAL4 cleaves CS chains into lower molecular weight forms that range in length from tetra- to dodecasaccharides. These results provide first evidence that mast cells produce HYAL4 and that this enzyme may play a specific role in maintaining α-granule homeostasis in these cells by cleaving CS glycosaminoglycan chains attached to serglycin.


Assuntos
Sulfatos de Condroitina/metabolismo , Hialuronoglucosaminidase/biossíntese , Mastócitos/enzimologia , Proteoglicanas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Agrecanas/química , Agrecanas/metabolismo , Animais , Sulfatos de Condroitina/química , Humanos , Peso Molecular , Proteoglicanas/química , Proteínas de Transporte Vesicular/química
3.
Biochem J ; 475(3): 587-620, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439148

RESUMO

Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.


Assuntos
Biodiversidade , Sulfatos de Condroitina/química , Glicosaminoglicanos/química , Morfogênese/genética , Sulfatos de Condroitina/genética , Glicosaminoglicanos/genética , Humanos , Proteoglicanas/química , Proteoglicanas/genética , Transdução de Sinais/genética
4.
J Biol Chem ; 292(10): 4054-4063, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28115521

RESUMO

Platelet factor 4 (PF4) is produced by platelets with roles in both inflammation and wound healing. PF4 is stored in platelet α-granules bound to the glycosaminoglycan (GAG) chains of serglycin. This study revealed that platelet serglycin is decorated with chondroitin/dermatan sulfate and that PF4 binds to these GAG chains. Additionally, PF4 had a higher affinity for endothelial-derived perlecan heparan sulfate chains than serglycin GAG chains. The binding of PF4 to perlecan was found to inhibit both FGF2 signaling and platelet activation. This study revealed additional insight into the ways in which PF4 interacts with components of the vasculature to modulate cellular events.


Assuntos
Plaquetas/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Fator Plaquetário 4/metabolismo , Proteoglicanas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Humanos , Ativação Plaquetária , Ligação Proteica
5.
Mol Pharm ; 15(3): 994-1004, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29397735

RESUMO

Cerium oxide nanoparticles (nanoceria) are promising catalytic nanomaterials that are widely reported to modulate intracellular reactive oxygen species (ROS). In this study, nanoceria were synthesized by flame spray pyrolysis and functionalized with a cell-targeting ligand, folic acid (FA). The surface functionalization of nanoceria was stable, and FA enhanced the uptake of nanoceria via folate receptors. Internalized nanoceria and FA-nanoceria were localized predominantly in the cytoplasm. FA-nanoceria modulated intracellular ROS to a greater extent than the nanoceria in colon carcinoma cells, but induced ROS in ovarian cancer cells, likely due to their enhanced uptake. Together these data demonstrated that the functionalization of nanoceria with FA modulated their endocytosis and redox activity, and they may find application in the delivery of anticancer drugs in the future.


Assuntos
Antioxidantes/administração & dosagem , Cério/administração & dosagem , Ácido Fólico/química , Nanopartículas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Linhagem Celular Tumoral , Cério/química , Endocitose/efeitos dos fármacos , Feminino , Receptor 1 de Folato/metabolismo , Humanos , Nanopartículas/química , Oxirredução/efeitos dos fármacos
6.
Arterioscler Thromb Vasc Biol ; 37(6): 1168-1179, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408374

RESUMO

OBJECTIVE: Biglycan (BGN) has reduced expression in placentae from pregnancies complicated by fetal growth restriction (FGR). We used first trimester placental samples from pregnancies with later small for gestational age (SGA) infants as a surrogate for FGR. The functional consequences of reduced BGN and the downstream targets of BGN were determined. Furthermore, the expression of targets was validated in primary placental endothelial cells isolated from FGR or control pregnancies. APPROACH AND RESULTS: BGN expression was determined using real-time polymerase chain reaction in placental tissues collected during chorionic villous sampling performed at 10 to 12 weeks' gestation from pregnancies that had known clinical outcomes, including SGA. Short-interference RNA reduced BGN expression in telomerase-immortalized microvascular endothelial cells, and the effect on proliferation, angiogenesis, and thrombin generation was determined. An angiogenesis array identified downstream targets of BGN, and their expression in control and FGR primary placental endothelial cells was validated using real-time polymerase chain reaction. Reduced BGN expression was observed in SGA placental tissues. BGN reduction decreased network formation of telomerase-immortalized microvascular endothelial cells but did not affect thrombin generation or cellular proliferation. The array identified target genes, which were further validated: angiopoetin 4 (ANGPT4), platelet-derived growth factor receptor α (PDGFRA), tumor necrosis factor superfamily member 15 (TNFSF15), angiogenin (ANG), serpin family C member 1 (SERPIN1), angiopoietin 2 (ANGPT2), and CXC motif chemokine 12 (CXCL12) in telomerase-immortalized microvascular endothelial cells and primary placental endothelial cells obtained from control and FGR pregnancies. CONCLUSIONS: This study reports a temporal relationship between altered placental BGN expression and subsequent development of SGA. Reduction of BGN in vascular endothelial cells leads to disrupted network formation and alterations in the expression of genes involved in angiogenesis. Therefore, differential expression of these may contribute to aberrant angiogenesis in SGA pregnancies.


Assuntos
Biglicano/metabolismo , Vilosidades Coriônicas/irrigação sanguínea , Vilosidades Coriônicas/metabolismo , Células Endoteliais/metabolismo , Retardo do Crescimento Fetal/metabolismo , Microvasos/metabolismo , Neovascularização Fisiológica , Primeiro Trimestre da Gravidez/metabolismo , Telomerase/metabolismo , Animais , Biglicano/genética , Estudos de Casos e Controles , Linhagem Celular , Amostra da Vilosidade Coriônica , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Gravidez , Primeiro Trimestre da Gravidez/genética , Interferência de RNA , Transdução de Sinais , Telomerase/genética , Trombina/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Transfecção
7.
Molecules ; 22(5)2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28505124

RESUMO

Heparin and heparan sulfate are structurally-related carbohydrates with therapeutic applications in anticoagulation, drug delivery, and regenerative medicine. This study explored the effect of different bioreactor conditions on the production of heparin/heparan sulfate chains via the recombinant expression of serglycin in mammalian cells. Tissue culture flasks and continuously-stirred tank reactors promoted the production of serglycin decorated with heparin/heparan sulfate, as well as chondroitin sulfate, while the serglycin secreted by cells in the tissue culture flasks produced more highly-sulfated heparin/heparan sulfate chains. The serglycin produced in tissue culture flasks was effective in binding and signaling fibroblast growth factor 2, indicating the utility of this molecule in drug delivery and regenerative medicine applications in addition to its well-known anticoagulant activity.


Assuntos
Reatores Biológicos , Heparina/química , Heparitina Sulfato/química , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Proteoglicanas/química , Relação Estrutura-Atividade , Proteínas de Transporte Vesicular/química
8.
Metab Eng ; 38: 105-114, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27445159

RESUMO

Heparin is a carbohydrate anticoagulant used clinically to prevent thrombosis, however impurities can limit its efficacy. Here we report the biosynthesis of heparin-like heparan sulfate via the recombinant expression of human serglycin in human cells. The expressed serglycin was also decorated with chondroitin/dermatan sulfate chains and the relative abundance of these glycosaminoglycan chains changed under different concentrations of glucose in the culture medium. The recombinantly expressed serglycin produced with 25mM glucose present in the culture medium was found to possess anticoagulant activity one-seventh of that of porcine unfractionated heparin, demonstrating that bioengineered human heparin-like heparan sulfate may be a safe next-generation pharmaceutical heparin.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Engenharia Genética/métodos , Heparina/análogos & derivados , Proteoglicanas/administração & dosagem , Proteoglicanas/biossíntese , Proteínas de Transporte Vesicular/administração & dosagem , Proteínas de Transporte Vesicular/biossíntese , Anticoagulantes/administração & dosagem , Anticoagulantes/metabolismo , Células HEK293 , Heparina/administração & dosagem , Heparina/biossíntese , Heparina/genética , Humanos , Engenharia Metabólica , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética
9.
Biochem J ; 459(2): 313-22, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24517414

RESUMO

ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 µM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.


Assuntos
Vasos Coronários/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Ácido Peroxinitroso/farmacologia , Aterosclerose/metabolismo , Células Cultivadas , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Oxidantes/farmacologia , Oxirredução
10.
Molecules ; 20(3): 4254-76, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25751786

RESUMO

Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are heterogeneous in nature, not only due to differing disaccharide combinations, but also their sulfate modifications. HS is well known for its interactions with various growth factors and cytokines; and heparin for its clinical use as an anticoagulant. Due to their potential use in tissue regeneration; and the recent adverse events due to contamination of heparin; there is an increased surge to produce these GAGs on a commercial scale. The production of HS from natural sources is limited so strategies are being explored to be biomimetically produced via chemical; chemoenzymatic synthesis methods and through the recombinant expression of proteoglycans. This review details the most recent advances in the field of HS/heparin synthesis for the production of low molecular weight heparin (LMWH) and as a tool further our understanding of the interactions that occur between GAGs and growth factors and cytokines involved in tissue development and repair.


Assuntos
Anticoagulantes/metabolismo , Biomimética , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Animais , Anticoagulantes/química , Heparina/química , Heparitina Sulfato/química , Humanos
11.
J Biol Chem ; 288(32): 22930-41, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801333

RESUMO

Inter-α-trypsin inhibitor (IαI) is a complex comprising two heavy chains (HCs) that are covalently bound by an ester bond to chondroitin sulfate (CS), which itself is attached to Ser-10 of bikunin. IαI is essential for the trans-esterification of HCs onto hyaluronan (HA). This process is important for the stabilization of HA-rich matrices during ovulation and some inflammatory processes. Bikunin has been isolated previously by anion exchange chromatography with a salt gradient up to 0.5 M NaCl and found to contain unsulfated and 4-sulfated CS disaccharides. In this study, bikunin-containing fractions in plasma and urine were separated by anion exchange chromatography with a salt gradient of 0.1-1.0 M NaCl, and fractions were analyzed for their reactivity with the 4-sulfated CS linkage region antibody (2B6). The fractions that reacted with the 2B6 antibody (0.5-0.8 M NaCl) were found to predominantly contain sulfated CS disaccharides, including disulfated disaccharides, whereas the fractions that did not react with this antibody (0.1-0.5 M NaCl) contained unsulfated and 4-sulfated CS disaccharides. IαI in the 0.5-0.8 M NaCl plasma fraction was able to promote the trans-esterification of HCs to HA in the presence of TSG-6, whereas the 0.1-0.5 M NaCl fraction had a much reduced ability to transfer HC proteins to HA, suggesting that the CS containing 4-sulfated linkage region structures and disulfated disaccharides are involved in the HC transfer. Furthermore, these data highlight that the structure of the CS attached to bikunin is important for the transfer of HC onto HA and emphasize a specific role of CS chain sulfation.


Assuntos
alfa-Globulinas , Sulfatos de Condroitina , Ácido Hialurônico , alfa-Globulinas/química , alfa-Globulinas/isolamento & purificação , alfa-Globulinas/metabolismo , Configuração de Carboidratos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Feminino , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Ácido Hialurônico/metabolismo , Masculino , Ovulação/fisiologia
12.
J Biol Chem ; 288(5): 3289-304, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23235151

RESUMO

Mast cells are derived from hematopoietic progenitors that are known to migrate to and reside within connective and mucosal tissues, where they differentiate and respond to various stimuli by releasing pro-inflammatory mediators, including histamine, growth factors, and proteases. This study demonstrated that primary human mast cells as well as the rat and human mast cell lines, RBL-2H3 and HMC-1, produce the heparan sulfate proteoglycan, perlecan, with a molecular mass of 640 kDa as well as smaller molecular mass species of 300 and 130 kDa. Utilizing domain-specific antibodies coupled with N-terminal sequencing, it was confirmed that both forms contained the C-terminal module of the protein core known as endorepellin, which were generated by mast cell-derived proteases. Domain-specific RT-PCR experiments demonstrated that transcripts corresponding to domains I and V, including endorepellin, were present; however, mRNA transcripts corresponding to regions of domain III were not present, suggesting that these cells were capable of producing spliced forms of the protein core. Fractions from mast cell cultures that were enriched for these fragments were shown to bind endothelial cells via the α(2)ß(1) integrin and stimulate the migration of cells in "scratch assays," both activities of which were inhibited by incubation with either anti-endorepellin or anti-perlecan antibodies. This study shows for the first time that mast cells secrete and process the extracellular proteoglycan perlecan into fragments containing the endorepellin C-terminal region that regulate angiogenesis and matrix turnover, which are both key events in wound healing.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Mastócitos/metabolismo , Neovascularização Fisiológica , Fragmentos de Peptídeos/metabolismo , Cicatrização , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Vasos Coronários/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glicosaminoglicanos/biossíntese , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/isolamento & purificação , Humanos , Integrina alfa2beta1/metabolismo , Pulmão/citologia , Mastócitos/citologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteoglicanas/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas de Transporte Vesicular/biossíntese
13.
Adv Healthc Mater ; : e2400855, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780418

RESUMO

Synthetic vascular grafts are used to bypass significant arterial blockage when native blood vessels are unsuitable, yet their propensity to fail due to poor blood compatibility and progressive graft stenosis remains an intractable challenge. Perlecan is the major heparan sulfate (HS) proteoglycan in the blood vessel wall with an inherent ability to regulate vascular cell activities associated with these major graft failure modes. Here the ability of the engineered form of perlecan domain V (rDV) to bind angiogenic growth factors is tuned and endothelial cell proliferation via the composition of its glycosaminoglycan (GAG) chain is supported. It is shown that the HS on rDV supports angiogenic growth factor signaling, including fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF)165, while both HS and chondroitin sulfate on rDV are involved in VEGF189 signaling. It is also shown that physisorption of rDV on emerging electrospun silk fibroin vascular grafts promotes endothelialization and patency in a murine arterial interposition model, compared to the silk grafts alone. Together, this study demonstrates the potential of rDV as a tunable, angiogenic biomaterial coating that both potentiates growth factors and regulates endothelial cells.

14.
J Biol Chem ; 287(43): 35922-33, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22930755

RESUMO

Lubricin (or proteoglycan 4 (PRG4)) is an abundant mucin-like glycoprotein in synovial fluid (SF) and a major component responsible for joint lubrication. In this study, it was shown that O-linked core 2 oligosaccharides (Galß1-3(GlcNAcß1-6)GalNAcα1-Thr/Ser) on lubricin isolated from rheumatoid arthritis SF contained both sulfate and fucose residues, and SF lubricin was capable of binding to recombinant L-selectin in a glycosylation-dependent manner. Using resting human polymorphonuclear granulocytes (PMN) from peripheral blood, confocal microscopy showed that lubricin coated circulating PMN and that it partly co-localized with L-selectin expressed by these cells. In agreement with this, activation-induced shedding of L-selectin also mediated decreased lubricin binding to PMN. It was also found that PMN recruited to inflamed synovial area and fluid in rheumatoid arthritis patients kept a coat of lubricin. These observations suggest that lubricin is able to bind to PMN via an L-selectin-dependent and -independent manner and may play a role in PMN-mediated inflammation.


Assuntos
Artrite Reumatoide/metabolismo , Glicoproteínas/metabolismo , Leucócitos Mononucleares/metabolismo , Oligossacarídeos/metabolismo , Proteoglicanas/metabolismo , Líquido Sinovial/metabolismo , Adulto , Idoso , Artrite Reumatoide/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Selectina L/biossíntese , Leucócitos Mononucleares/patologia , Antígenos do Grupo Sanguíneo de Lewis , Masculino , Pessoa de Meia-Idade , Ligação Proteica
15.
Nanomicro Lett ; 15(1): 236, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874411

RESUMO

Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal-organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to "find-and-fetch" target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.

16.
J Control Release ; 362: 184-196, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37648081

RESUMO

Growth factors are key molecules involved in angiogenesis, a process critical for tissue repair and regeneration. Despite the potential of growth factor delivery to stimulate angiogenesis, limited clinical success has been achieved with this approach. Growth factors interact with the extracellular matrix (ECM), and particularly heparan sulphate (HS), to bind and potentiate their signalling. Here we show that engineered short forms of perlecan, the major HS proteoglycan of the vascular ECM, bind and signal angiogenic growth factors, including fibroblast growth factor 2 and vascular endothelial growth factor-A. We also show that engineered short forms of perlecan delivered in porous chitosan biomaterial scaffolds promote angiogenesis in a rat full thickness dermal wound model, with the fusion of perlecan domains I and V leading to superior vascularisation compared to native endothelial perlecan or chitosan scaffolds alone. Together, this study demonstrates the potential of engineered short forms of perlecan delivered in chitosan scaffolds as next generation angiogenic therapies which exert biological activity via the potentiation of growth factors.


Assuntos
Quitosana , Fator A de Crescimento do Endotélio Vascular , Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas da Matriz Extracelular
17.
J Biol Chem ; 286(29): 25947-62, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21596751

RESUMO

Endorepellin, the C-terminal module of perlecan, negatively regulates angiogenesis counter to its proangiogenic parental molecule. Endorepellin (the C-terminal domain V of perlecan) binds the α2ß1 integrin on endothelial cells and triggers a signaling cascade that leads to disruption of the actin cytoskeleton. Here, we show that both perlecan and endorepellin bind directly and with high affinity to both VEGF receptors 1 and 2, in a region that differs from VEGFA-binding site. In both human and porcine endothelial cells, this interaction evokes a physical down-regulation of both the α2ß1 integrin and VEGFR2, with concurrent activation of the tyrosine phosphatase SHP-1 and downstream attenuation of VEGFA transcription. We demonstrate that endorepellin requires both the α2ß1 integrin and VEGFR2 for its angiostatic activity. Endothelial cells that express α2ß1 integrin but lack VEGFR2, do not respond to endorepellin treatment. Thus, we provide a new paradigm for the activity of an antiangiogenic protein and mechanistically explain the specificity of endorepellin for endothelial cells, the only cells that simultaneously express both receptors. We hypothesize that a mechanism such as dual receptor antagonism could operate for other angiostatic fragments.


Assuntos
Proteínas Angiostáticas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Integrina alfa2beta1/antagonistas & inibidores , Integrina alfa2beta1/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Angiostáticas/química , Proteínas Angiostáticas/farmacologia , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/farmacologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Ratos , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
18.
BMC Biotechnol ; 12: 60, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22967000

RESUMO

BACKGROUND: Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. RESULTS: Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). CONCLUSIONS: A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proteoglicanas de Heparan Sulfato/química , Osteoblastos/citologia , Osteogênese , Proteoglicanas/metabolismo , Células 3T3 , Animais , Proteína Morfogenética Óssea 2/genética , Células HEK293 , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Masculino , Camundongos , Osteoblastos/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Endogâmicos Lew
19.
Connect Tissue Res ; 53(2): 132-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21966936

RESUMO

Lubricin, also referred to as superficial zone protein, has been reported to be a proteoglycan. However, the structure of its glycosaminoglycan chain has not been well characterized, and this study was undertaken to investigate the structure of the glycosaminoglycan chain that decorated lubricin in human synovial fluid to provide insight into its biological role. Lubricin was detected as a major band at approximately 360 kDa which co-migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a chondroitin sulfate (CS)-containing proteoglycan that was detected by both monoclonal antibodies (MAb) 2-B-6 and MAb 3-B-3 after chondroitinase ABC treatment and keratan sulfate (KS) that was detected by MAb 5-D-4. Further analysis of lubricin-containing fractions that eluted from an anion exchange column indicated that the major population of lubricin could be separated from the CS and KS stubs which indicated that this fraction of lubricin was not decorated with glycosaminoglycan chain and was the glycoprotein form of lubricin. Lubricin present in fractions that also contained CS was found to be decorated with CS structures which were reactive with MAb 3-B-3 after chondroitinase ABC digestion using a sandwich enzyme-linked immunosorbent assay approach. Aggrecan was not found to form complexes with lubricin in synovial fluid which confirmed that the MAb 3-B-3 CS and MAb 5-D-4 KS structures decorated lubricin. These data demonstrate that lubricin present in human synovial fluid was a heterogeneous population with both glycoprotein and proteoglycan forms.


Assuntos
Glicoproteínas/química , Glicosaminoglicanos/química , Líquido Sinovial/química , Fracionamento Químico , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Humanos , Sulfato de Queratano/química , Sulfato de Queratano/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Isoformas de Proteínas , Líquido Sinovial/metabolismo
20.
Regen Biomater ; 9: rbac081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338174

RESUMO

Inadequate angiogenesis is a hallmark of conditions including cardiovascular diseases, stroke and chronic diabetic wounds, which exhibit tissue ischaemia ensuring that therapeutic strategies to promote angiogenesis are of great interest. However, many angiogenic treatments involve the delivery of growth factors which have limited clinical success due to poor stability, high manufacturing cost and poor efficacy. Cerium oxide nanoparticles (nanoceria) can either promote or inhibit angiogenesis depending on their surface corona chemistry. Here, nanoceria were functionalized with an intentional heparin corona, a polysaccharide which binds and signals growth factors, of different chain lengths and surface grafting density to establish their effect on angiogenesis. These nanoparticles promoted angiogenesis in vivo with the surface grafting density positively correlated with angiogenesis over the widest concentration range; however, chain length did not play a role. The heparin-nanoceria supported fibroblast growth factor 2 (FGF2) signalling in vitro and promoted FGF2-mediated angiogenesis in vivo. The nanoparticles were internalized by endothelial cells in vitro where they trafficked to the lysosomes and reduced cell viability suggesting that the angiogenic activity of heparin-nanoceria is mediated in the extracellular environment. Together, this study adds to our knowledge of the angiogenic effects of heparin-nanoceria towards finding new angiogenic treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA