Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
PLoS Biol ; 21(3): e3002043, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36877725

RESUMO

Delineating the human brain network and analyzing its architecture is one of the major goals of modern neuroscience. Here, we commemorate a 2008 landmark structural connectome study in PLOS Biology and gauge how it shaped the field of brain network science.


Assuntos
Conectoma , Neurociências , Humanos , Encéfalo , Córtex Cerebral
2.
PLoS Biol ; 21(7): e3002219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37441748

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.3002043.].

3.
Mol Psychiatry ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830974

RESUMO

Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.

4.
Mol Psychiatry ; 28(6): 2540-2548, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36991135

RESUMO

Adolescents experience alarmingly high rates of major depressive disorder (MDD), however, gold-standard treatments are only effective for ~50% of youth. Accordingly, there is a critical need to develop novel interventions, particularly ones that target neural mechanisms believed to potentiate depressive symptoms. Directly addressing this gap, we developed mindfulness-based fMRI neurofeedback (mbNF) for adolescents that aims to reduce default mode network (DMN) hyperconnectivity, which has been implicated in the onset and maintenance of MDD. In this proof-of-concept study, adolescents (n = 9) with a lifetime history of depression and/or anxiety were administered clinical interviews and self-report questionnaires, and each participant's DMN and central executive network (CEN) were personalized using a resting state fMRI localizer. After the localizer scan, adolescents completed a brief mindfulness training followed by a mbNF session in the scanner wherein they were instructed to volitionally reduce DMN relative to CEN activation by practicing mindfulness meditation. Several promising findings emerged. First, mbNF successfully engaged the target brain state during neurofeedback; participants spent more time in the target state with DMN activation lower than CEN activation. Second, in each of the nine adolescents, mbNF led to significantly reduced within-DMN connectivity, which correlated with post-mbNF increases in state mindfulness. Last, a reduction of within-DMN connectivity mediated the association between better mbNF performance and increased state mindfulness. These findings demonstrate that personalized mbNF can effectively and non-invasively modulate the intrinsic networks associated with the emergence and persistence of depressive symptoms during adolescence.


Assuntos
Transtorno Depressivo Maior , Atenção Plena , Neurorretroalimentação , Humanos , Adolescente , Transtorno Depressivo Maior/terapia , Projetos Piloto , Imageamento por Ressonância Magnética , Rede de Modo Padrão , Encéfalo/fisiologia , Mapeamento Encefálico , Vias Neurais/fisiologia
5.
Psychophysiology ; 61(4): e14469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905673

RESUMO

Previous research has indicated that cardiorespiratory fitness (CRF) is structurally and functionally neuroprotective in older adults. However, questions remain regarding the mechanistic role of CRF on cognitive and brain health. The purposes of this study were to investigate if higher pre-intervention CRF was associated with greater change in functional brain connectivity during an exercise intervention and to determine if the magnitude of change in connectivity was related to better post-intervention cognitive performance. The sample included low-active older adults (n = 139) who completed a 6-month exercise intervention and underwent neuropsychological testing, functional neuroimaging, and CRF testing before and after the intervention. A data-driven multi-voxel pattern analysis was performed on resting-state MRI scans to determine changes in whole-brain patterns of connectivity from pre- to post-intervention as a function of pre-intervention CRF. Results revealed a positive correlation between pre-intervention CRF and changes in functional connectivity in the precentral gyrus. Using the precentral gyrus as a seed, analyses indicated that CRF-related connectivity changes within the precentral gyrus were derived from increased correlation strength within clusters located in the Dorsal Attention Network (DAN) and increased anti-correlation strength within clusters located in the Default Mode Network (DMN). Exploratory analysis demonstrated that connectivity change between the precentral gyrus seed and DMN clusters were associated with improved post-intervention performance on perceptual speed tasks. These findings suggest that in a sample of low-active and mostly lower-fit older adults, even subtle individual differences in CRF may influence the relationship between functional connectivity and aspects of cognition following a 6-month exercise intervention.


Assuntos
Cognição , Rede de Modo Padrão , Humanos , Idoso , Encéfalo , Imageamento por Ressonância Magnética , Terapia por Exercício , Mapeamento Encefálico
6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876747

RESUMO

Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.


Assuntos
Conectoma , Citocinas/sangue , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Estresse Psicológico/diagnóstico por imagem , Adulto , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Gravidez , Fatores Sexuais
7.
Cerebellum ; 22(1): 26-36, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35023065

RESUMO

Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Imageamento por Ressonância Magnética/métodos , Cerebelo/diagnóstico por imagem , Mapeamento Encefálico , Neuroimagem , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
8.
BMC Psychiatry ; 23(1): 757, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848857

RESUMO

BACKGROUND: Adolescence is characterized by a heightened vulnerability for Major Depressive Disorder (MDD) onset, and currently, treatments are only effective for roughly half of adolescents with MDD. Accordingly, novel interventions are urgently needed. This study aims to establish mindfulness-based real-time fMRI neurofeedback (mbNF) as a non-invasive approach to downregulate the default mode network (DMN) in order to decrease ruminatory processes and depressive symptoms. METHODS: Adolescents (N = 90) with a current diagnosis of MDD ages 13-18-years-old will be randomized in a parallel group, two-arm, superiority trial to receive either 15 or 30 min of mbNF with a 1:1 allocation ratio. Real-time neurofeedback based on activation of the frontoparietal network (FPN) relative to the DMN will be displayed to participants via the movement of a ball on a computer screen while participants practice mindfulness in the scanner. We hypothesize that within-DMN (medial prefrontal cortex [mPFC] with posterior cingulate cortex [PCC]) functional connectivity will be reduced following mbNF (Aim 1: Target Engagement). Additionally, we hypothesize that participants in the 30-min mbNF condition will show greater reductions in within-DMN functional connectivity (Aim 2: Dosing Impact on Target Engagement). Aim 1 will analyze data from all participants as a single-group, and Aim 2 will leverage the randomized assignment to analyze data as a parallel-group trial. Secondary analyses will probe changes in depressive symptoms and rumination. DISCUSSION: Results of this study will determine whether mbNF reduces functional connectivity within the DMN among adolescents with MDD, and critically, will identify the optimal dosing with respect to DMN modulation as well as reduction in depressive symptoms and rumination. TRIAL REGISTRATION: This study has been registered with clinicaltrials.gov, most recently updated on July 6, 2023 (trial identifier: NCT05617495).


Assuntos
Transtorno Depressivo Maior , Atenção Plena , Neurorretroalimentação , Humanos , Adolescente , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/terapia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Giro do Cíngulo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
9.
Cerebellum ; 21(2): 225-233, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34146220

RESUMO

The interaction of the cerebellum with cerebral cortical dynamics is still poorly understood. In this paper, dynamical causal modeling is used to examine the interaction between cerebellum and cerebral cortex as indexed by MRI resting-state functional connectivity in three large-scale networks on healthy young adults (N = 200; Human Connectome Project dataset). These networks correspond roughly to default mode, task positive, and motor as determined by prior cerebellar functional gradient analyses. We find uniform interactions within all considered networks from cerebellum to cerebral cortex, providing support for the notion of a universal cerebellar transform. Our results provide a foundation for future analyses to quantify and further investigate whether this is a property that is unique to the interactions from cerebellum to cerebral cortex.


Assuntos
Córtex Cerebral , Conectoma , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
10.
Annu Rev Clin Psychol ; 18: 553-580, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534123

RESUMO

The theory of constructed emotion is a systems neuroscience approach to understanding the nature of emotion. It is also a general theoretical framework to guide hypothesis generation for how actions and experiences are constructed as the brain continually anticipates metabolic needs and attempts to meet those needs before they arise (termed allostasis). In this review, we introduce this framework and hypothesize that allostatic dysregulation is a trans-disorder vulnerability for mental and physical illness. We then review published findings consistent with the hypothesis that several symptoms in major depressive disorder (MDD), such as fatigue, distress, context insensitivity, reward insensitivity, and motor retardation, are associated with persistent problems in energy regulation. Our approach transforms the current understanding of MDD as resulting from enhanced emotional reactivity combined with reduced cognitive control and, in doing so, offers novel hypotheses regarding the development, progression, treatment, and prevention of MDD.


Assuntos
Alostase , Transtorno Depressivo Maior , Encéfalo , Depressão , Transtorno Depressivo Maior/terapia , Emoções , Humanos
11.
Neuroimage ; 245: 118694, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34732328

RESUMO

In this paper we provide an overview of the rationale, methods, and preliminary results of the four Connectome Studies Related to Human Disease investigating mood and anxiety disorders. The first study, "Dimensional connectomics of anxious misery" (HCP-DAM), characterizes brain-symptom relations of a transdiagnostic sample of anxious misery disorders. The second study, "Human connectome Project for disordered emotional states" (HCP-DES), tests a hypothesis-driven model of brain circuit dysfunction in a sample of untreated young adults with symptoms of depression and anxiety. The third study, "Perturbation of the treatment resistant depression connectome by fast-acting therapies" (HCP-MDD), quantifies alterations of the structural and functional connectome as a result of three fast-acting interventions: electroconvulsive therapy, serial ketamine therapy, and total sleep deprivation. Finally, the fourth study, "Connectomes related to anxiety and depression in adolescents" (HCP-ADA), investigates developmental trajectories of subtypes of anxiety and depression in adolescence. The four projects use comparable and standardized Human Connectome Project magnetic resonance imaging (MRI) protocols, including structural MRI, diffusion-weighted MRI, and both task and resting state functional MRI. All four projects also conducted comprehensive and convergent clinical and neuropsychological assessments, including (but not limited to) demographic information, clinical diagnoses, symptoms of mood and anxiety disorders, negative and positive affect, cognitive function, and exposure to early life stress. The first round of analyses conducted in the four projects offered novel methods to investigate relations between functional connectomes and self-reports in large datasets, identified new functional correlates of symptoms of mood and anxiety disorders, characterized the trajectory of connectome-symptom profiles over time, and quantified the impact of novel treatments on aberrant connectivity. Taken together, the data obtained and reported by the four Connectome Studies Related to Human Disease investigating mood and anxiety disorders describe a rich constellation of convergent biological, clinical, and behavioral phenotypes that span the peak ages for the onset of emotional disorders. These data are being prepared for open sharing with the scientific community following screens for quality by the Connectome Coordinating Facility (CCF). The CCF also plans to release data from all projects that have been pre-processed using identical state-of-the-art pipelines. The resultant dataset will give researchers the opportunity to pool complementary data across the four projects to study circuit dysfunctions that may underlie mood and anxiety disorders, to map cohesive relations among circuits and symptoms, and to probe how these relations change as a function of age and acute interventions. This large and combined dataset may also be ideal for using data-driven analytic approaches to inform neurobiological targets for future clinical trials and interventions focused on clinical or behavioral outcomes.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Transtornos do Humor/fisiopatologia , Adolescente , Adulto , Transtornos de Ansiedade/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Humor/terapia
12.
Neuroimage ; 242: 118466, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34389443

RESUMO

Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Estado de Consciência , Humanos , Aprendizagem , Rede Nervosa
13.
Neuroimage ; 226: 117564, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285331

RESUMO

Diffusion kurtosis imaging (DKI) is a diffusion MRI approach that enables the measurement of brain microstructural properties, reflecting molecular restrictions and tissue heterogeneity. DKI parameters such as mean kurtosis (MK) provide additional subtle information to that provided by popular diffusion tensor imaging (DTI) parameters, and thus have been considered useful to detect white matter abnormalities, especially in populations that are not expected to show severe brain pathologies. However, DKI parameters often yield artifactual output values that are outside of the biologically plausible range, which diminish sensitivity to identify true microstructural changes. Recently we have proposed the mean-kurtosis-curve (MK-Curve) method to correct voxels with implausible DKI parameters, and demonstrated its improved performance against other approaches that correct artifacts in DKI. In this work, we aimed to evaluate the utility of the MK-Curve method to improve the identification of white matter abnormalities in group comparisons. To do so, we compared group differences, with and without the MK-Curve correction, between 115 individuals at clinical high risk for psychosis (CHR) and 93 healthy controls (HCs). We also compared the correlation of the corrected and uncorrected DKI parameters with clinical characteristics. Following the MK-curve correction, the group differences had larger effect sizes and higher statistical significance (i.e., lower p-values), demonstrating increased sensitivity to detect group differences, in particular in MK. Furthermore, the MK-curve-corrected DKI parameters displayed stronger correlations with clinical variables in CHR individuals, demonstrating the clinical relevance of the corrected parameters. Overall, following the MK-curve correction our analyses found widespread lower MK in CHR that overlapped with lower fractional anisotropy (FA), and both measures were significantly correlated with a decline in functioning and with more severe symptoms. These observations further characterize white matter alterations in the CHR stage, demonstrating that MK and FA abnormalities are widespread, and mostly overlap. The improvement in group differences and stronger correlation with clinical variables suggest that applying MK-curve would be beneficial for the detection and characterization of subtle group differences in other experiments as well.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Feminino , Humanos , Masculino , Fatores de Risco , Sensibilidade e Especificidade , Adulto Jovem
14.
J Neurovirol ; 27(2): 239-248, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666883

RESUMO

Central nervous system (CNS) sequelae continue to be common in HIV-infected individuals despite combination antiretroviral therapy (cART). These sequelae include HIV-associated neurocognitive disorder (HAND) and virologic persistence in the CNS. Resting state functional magnetic resonance imaging (rsfMRI) is a widely used tool to examine the integrity of brain function and pathology. In this study, we examined 16 HIV-positive (HIV+) subjects and 12 age, sex, and race matched HIV seronegative controls (HIV-) whole-brain high-resolution rsfMRI along with a battery of neurocognitive tests. A comprehensive data-driven analysis of rsfMRI revealed impaired functional connectivity, with very large effect sizes in executive function, language, and multisensory processing networks in HIV+ subjects. These results indicate the potential of high-resolution rsfMRI in combination with advanced data analysis techniques to yield biomarkers of neural impairment in HIV.


Assuntos
Complexo AIDS Demência/diagnóstico por imagem , Complexo AIDS Demência/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Neuroimagem/métodos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Descanso
15.
Cerebellum ; 20(3): 392-401, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33210245

RESUMO

Adolescents with anxiety disorders exhibit excessive emotional and somatic arousal. Neuroimaging studies have shown abnormal cerebral cortical activation and connectivity in this patient population. The specific role of cerebellar output circuitry, specifically the dentate nuclei (DN), in adolescent anxiety disorders remains largely unexplored. Resting-state functional connectivity analyses have parcellated the DN, the major output nuclei of the cerebellum, into three functional territories (FTs) that include default-mode, salience-motor, and visual networks. The objective of this study was to understand whether FTs of the DN are implicated in adolescent anxiety disorders. Forty-one adolescents (mean age 15.19 ± 0.82, 26 females) with one or more anxiety disorders and 55 age- and gender-matched healthy controls completed resting-state fMRI scans and a self-report survey on anxiety symptoms. Seed-to-voxel functional connectivity analyses were performed using the FTs from DN parcellation. Brain connectivity metrics were then correlated with State-Trait Anxiety Inventory (STAI) measures within each group. Adolescents with an anxiety disorder showed significant hyperconnectivity between salience-motor DN FT and cerebral cortical salience-motor regions compared to controls. Salience-motor FT connectivity with cerebral cortical sensorimotor regions was significantly correlated with STAI-trait scores in HC (R2 = 0.41). Here, we report DN functional connectivity differences in adolescents diagnosed with anxiety, as well as in HC with variable degrees of anxiety traits. These observations highlight the relevance of DN as a potential clinical and sub-clinical marker of anxiety.


Assuntos
Transtornos de Ansiedade/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Adolescente , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Movimento/fisiologia , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Autorrelato
16.
Mol Psychiatry ; 25(10): 2431-2440, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30410064

RESUMO

The emergence of prodromal symptoms of schizophrenia and their evolution into overt psychosis may stem from an aberrant functional reorganization of the brain during adolescence. To examine whether abnormalities in connectome organization precede psychosis onset, we performed a functional connectome analysis in a large cohort of medication-naive youth at risk for psychosis from the Shanghai At Risk for Psychosis (SHARP) study. The SHARP program is a longitudinal study of adolescents and young adults at Clinical High Risk (CHR) for psychosis, conducted at the Shanghai Mental Health Center in collaboration with neuroimaging laboratories at Harvard and MIT. Our study involved a total of 251 subjects, including 158 CHRs and 93 age-, sex-, and education-matched healthy controls. During 1-year follow-up, 23 CHRs developed psychosis. CHRs who would go on to develop psychosis were found to show abnormal modular connectome organization at baseline, while CHR non-converters did not. In all CHRs, abnormal modular connectome organization at baseline was associated with a threefold conversion rate. A region-specific analysis showed that brain regions implicated in early-course schizophrenia, including superior temporal gyrus and anterior cingulate cortex, were most abnormal in terms of modular assignment. Our results show that functional changes in brain network organization precede the onset of psychosis and may drive psychosis development in at-risk youth.


Assuntos
Conectoma , Transtornos Psicóticos/diagnóstico , Adolescente , Adulto , Criança , China , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Sintomas Prodrômicos , Prognóstico , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Adulto Jovem
17.
Brain ; 143(6): 1674-1685, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176800

RESUMO

Neurofeedback has begun to attract the attention and scrutiny of the scientific and medical mainstream. Here, neurofeedback researchers present a consensus-derived checklist that aims to improve the reporting and experimental design standards in the field.


Assuntos
Lista de Checagem/métodos , Neurorretroalimentação/métodos , Adulto , Consenso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Revisão da Pesquisa por Pares , Projetos de Pesquisa/normas , Participação dos Interessados
18.
Cereb Cortex ; 30(4): 2401-2417, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31701117

RESUMO

Anatomical connections link the cerebellar cortex with multiple sensory, motor, association, and paralimbic cerebral areas. The majority of fibers that exit cerebellar cortex synapse in dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex, but the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macroscale functional organization. This broad spectrum of human neural processing categories is represented not only in the cerebral cortex, but also in the thalamus, striatum, and cerebellar cortex. Whether functional organization in DN obeys a similar set of macroscale divisions, and whether DN are yet another compartment of representation of a broad spectrum of human neural processing categories, remains unknown. Here, we show for the first time that human DN are optimally divided into three functional territories as indexed by high spatio-temporal resolution resting-state MRI in 77 healthy humans, and that these three distinct territories contribute uniquely to default-mode, salience-motor, and visual cerebral cortical networks. Our findings provide a systems neuroscience substrate for cerebellar output to influence multiple broad categories of neural control.


Assuntos
Núcleos Cerebelares/diagnóstico por imagem , Núcleos Cerebelares/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
19.
Neuroimage ; 207: 116384, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31760149

RESUMO

Jazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity. We compared Improvising musicians, Classical musicians, and Minimally Musically Trained (MMT) controls in seed-based functional connectivity and network analyses in resting state functional MRI. We also examined the functional correlates of behavioral performance in musical improvisation and divergent thinking. Seed-based analysis consistently showed higher connectivity in ventral DMN (vDMN) and bilateral ECN in both groups of musically trained individuals as compared to MMT controls, with additional group differences in primary visual network. In particular, primary visual network connectivity to DMN and ECN was highest in Improvisational musicians, as was connectivity between ECN and DMN; in contrast, connectivity between vDMN and frontal pole was highest in Classical musicians. Furthermore, graph-theoretical analysis indicated heightened network measures in both musician groups, with betweenness centrality, clustering, and local efficiency showing highest levels in Classical musicians, and degrees and strengths showing highest levels in Improvisational musicians. Taken together, results suggest that heightened functional connectivity among musicians can be explained by higher within-network connectivity (more tight-knit cortical networks) in Classical musicians, as opposed to more disperse, globally-connected cortical networks in Improvisational musicians.


Assuntos
Encéfalo/fisiologia , Criatividade , Música , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico/métodos , Cognição/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino
20.
Hum Brain Mapp ; 41(18): 5356-5369, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32969562

RESUMO

Mindfulness training can enhance cognitive control, but the neural mechanisms underlying such enhancement in children are unknown. Here, we conducted a randomized controlled trial (RCT) with sixth graders (mean age 11.76 years) to examine the impact of 8 weeks of school-based mindfulness training, relative to coding training as an active control, on sustained attention and associated resting-state functional brain connectivity. At baseline, better performance on a sustained-attention task correlated with greater anticorrelation between the default mode network (DMN) and right dorsolateral prefrontal cortex (DLPFC), a key node of the central executive network. Following the interventions, children in the mindfulness group preserved their sustained-attention performance (i.e., fewer lapses of attention) and preserved DMN-DLPFC anticorrelation compared to children in the active control group, who exhibited declines in both sustained attention and DMN-DLPFC anticorrelation. Further, change in sustained-attention performance correlated with change in DMN-DLPFC anticorrelation only within the mindfulness group. These findings provide the first causal link between mindfulness training and both sustained attention and associated neural plasticity. Administered as a part of sixth graders' school schedule, this RCT supports the beneficial effects of school-based mindfulness training on cognitive control.


Assuntos
Atenção/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Função Executiva/fisiologia , Atenção Plena , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Criança , Rede de Modo Padrão/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Desempenho Psicomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA