Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(16): 4842-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907327

RESUMO

Closely related bacterial genomes usually differ in gene content, suggesting that nearly every strain in nature may be ecologically unique. We have tested this hypothesis by sequencing the genomes of extremely close relatives within a recognized taxon and analyzing the genomes for evidence of ecological distinctness. We compared the genomes of four Death Valley isolates plus the laboratory strain W23, all previously classified as Bacillus subtilis subsp. spizizenii and hypothesized through multilocus analysis to be members of the same ecotype (an ecologically homogeneous population), named putative ecotype 15 (PE15). These strains showed a history of positive selection on amino acid sequences in 38 genes. Each of the strains was under a different regimen of positive selection, suggesting that each strain is ecologically unique and represents a distinct ecological speciation event. The rate of speciation appears to be much faster than can be resolved with multilocus sequencing. Each PE15 strain contained unique genes known to confer a function for bacteria. Remarkably, no unique gene conferred a metabolic system or subsystem function that was not already present in all the PE15 strains sampled. Thus, the origin of ecotypes within this clade shows no evidence of qualitative divergence in the set of resources utilized. Ecotype formation within this clade is consistent with the nanoniche model of bacterial speciation, in which ecotypes use the same set of resources but in different proportions, and genetic cohesion extends beyond a single ecotype to the set of ecotypes utilizing the same resources.


Assuntos
Bacillus subtilis/genética , Ecossistema , Genoma Bacteriano , Bacillus subtilis/classificação , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Genômica , Dados de Sequência Molecular , Filogenia , Seleção Genética
2.
FEMS Microbiol Rev ; 35(5): 957-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21711367

RESUMO

Horizontal genetic transfer (HGT) has played an important role in bacterial evolution at least since the origins of the bacterial divisions, and HGT still facilitates the origins of bacterial diversity, including diversity based on antibiotic resistance. Adaptive HGT is aided by unique features of genetic exchange in bacteria such as the promiscuity of genetic exchange and the shortness of segments transferred. Genetic exchange rates are limited by the genetic and ecological similarity of organisms. Adaptive transfer of genes is limited to those that can be transferred as a functional unit, provide a niche-transcending adaptation, and are compatible with the architecture and physiology of other organisms. Horizontally transferred adaptations may bring about fitness costs, and natural selection may ameliorate these costs. The origins of ecological diversity can be analyzed by comparing the genomes of recently divergent, ecologically distinct populations, which can be discovered as sequence clusters. Such genome comparisons demonstrate the importance of HGT in ecological diversification. Newly divergent populations cannot be discovered as sequence clusters when their ecological differences are coded by plasmids, as is often the case for antibiotic resistance; the discovery of such populations requires a screen for plasmid-coded functions. This paper reviews the features of bacterial genetics that allow HGT, the similarities between organisms that foster HGT between them, the limits to the kinds of adaptations that can be transferred, and amelioration of fitness costs associated with HGT; the paper also reviews approaches to discover the origins of new, ecologically distinct bacterial populations and the role that HGT plays in their founding.


Assuntos
Adaptação Biológica , Bactérias/genética , Evolução Biológica , Transferência Genética Horizontal , Variação Genética , Plasmídeos , Recombinação Genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA