Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942724

RESUMO

Glucose sensing in pancreatic ß-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain ß-cell mass essential for blood glucose control.


Assuntos
Células Secretoras de Insulina , Neoplasias Pancreáticas , Animais , Ratos , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo
2.
J Biol Chem ; 298(3): 101652, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101444

RESUMO

Mitochondrial dysfunction induces a strong adaptive retrograde signaling response; however, many of the downstream effectors of this response remain to be discovered. Here, we studied the shared transcriptional responses to three different mitochondrial respiratory chain inhibitors in human primary skin fibroblasts using QuantSeq 3'-RNA-sequencing. We found that genes involved in the mevalonate pathway were concurrently downregulated, irrespective of the respiratory chain complex affected. Targeted metabolomics demonstrated that impaired mitochondrial respiration at any of the three affected complexes also had functional consequences on the mevalonate pathway, reducing levels of cholesterol precursor metabolites. A deeper study of complex I inhibition showed a reduced activity of endoplasmic reticulum-bound sterol-sensing enzymes through impaired processing of the transcription factor Sterol Regulatory Element-Binding Protein 2 and accelerated degradation of the endoplasmic reticulum cholesterol-sensors squalene epoxidase and HMG-CoA reductase. These adaptations of mevalonate pathway activity affected neither total intracellular cholesterol levels nor the cellular free (nonesterified) cholesterol pool. Finally, measurement of intracellular cholesterol using the fluorescent cholesterol binding dye filipin revealed that complex I inhibition elevated cholesterol on intracellular compartments. Taken together, our study shows that mitochondrial respiratory chain dysfunction elevates intracellular free cholesterol levels and therefore attenuates the expression of mevalonate pathway enzymes, which lowers endogenous cholesterol biosynthesis, disrupting the metabolic output of the mevalonate pathway. We conclude that intracellular disturbances in cholesterol homeostasis may alter systemic cholesterol management in diseases associated with declining mitochondrial function.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons , Ácido Mevalônico , Mitocôndrias , Proteína de Ligação a Elemento Regulador de Esterol 2 , Esteróis , Colesterol/metabolismo , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Esteróis/metabolismo
3.
Diabetologia ; 63(12): 2628-2640, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32960311

RESUMO

AIMS/HYPOTHESIS: In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS: Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS: At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION: We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.


Assuntos
Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Humanos , Metabolômica/métodos
4.
FASEB J ; 33(4): 4660-4674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589571

RESUMO

In pancreatic ß-cells, mitochondria generate signals that promote insulin granule exocytosis. Here we study how lysine acetylation of mitochondrial proteins mechanistically affects metabolism-secretion coupling in insulin-secreting cells. Using mass spectrometry-based proteomics, we identified lysine acetylation sites in rat insulinoma cell line clone 1E cells. In cells lacking the mitochondrial lysine deacetylase sirtuin-3 (SIRT3), several matrix proteins are hyperacetylated. Disruption of the SIRT3 gene has a deleterious effect on mitochondrial energy metabolism and Ca2+ signaling. Under resting conditions, SIRT3 deficient cells are overactivated, which elevates the respiratory rate and enhances calcium signaling and basal insulin secretion. In response to glucose, the SIRT3 knockout cells are unable to mount a sustained cytosolic ATP response. Calcium signaling is strongly reduced and the respiratory response as well as insulin secretion are blunted. We propose mitochondrial protein lysine acetylation as a control mechanism in ß-cell energy metabolism and Ca2+ signaling.-De Marchi, U., Galindo, A. N., Thevenet, J., Hermant, A., Bermont, F., Lassueur, S., Domingo, J. S., Kussmann, M., Dayon, L., Wiederkehr, A. Mitochondrial lysine deacetylation promotes energy metabolism and calcium signaling in insulin-secreting cells.


Assuntos
Sinalização do Cálcio/fisiologia , Células Secretoras de Insulina/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Metabolismo Energético/fisiologia , Glucose/farmacologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Sirtuína 3/metabolismo , Espectrometria de Massas em Tandem
5.
J Cell Sci ; 130(11): 1929-1939, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404787

RESUMO

Pancreatic ß-cells sense glucose, promoting insulin secretion. Glucose sensing requires the sequential stimulation of glycolysis, mitochondrial metabolism and Ca2+ entry. To elucidate how mitochondrial activation in ß-cells contributes to insulin secretion, we compared the effects of glucose and the mitochondrial substrate methylsuccinate in the INS-1E insulin-secreting cell line at the respective concentrations at which they maximally activate mitochondrial respiration. Both substrates induced insulin secretion with distinct respiratory profiles, mitochondrial hyperpolarization, NADH production and ATP-to-ADP ratios. In contrast to glucose, methylsuccinate failed to induce large [Ca2+] rises and exocytosis proceeded largely independently of mitochondrial ATP synthesis. Both glucose- and methylsuccinate-induced secretion was blocked by diazoxide, indicating that Ca2+ is required for exocytosis. Dynamic assessment of the redox state of mitochondrial thiols revealed a less marked reduction in response to methylsuccinate than with glucose. Our results demonstrate that insulin exocytosis can be promoted by two distinct mechanisms one of which is dependent on mitochondrial ATP synthesis and large Ca2+ transients, and one of which is independent of mitochondrial ATP synthesis and relies on small Ca2+ signals. We propose that the combined effects of Ca2+ and redox reactions can trigger insulin secretion by these two mechanisms.


Assuntos
Cálcio/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Succinatos/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular Tumoral , Diazóxido/farmacologia , Exocitose/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Imagem Molecular , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Análise de Célula Única , Succinatos/metabolismo
6.
Cell Commun Signal ; 17(1): 14, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30786936

RESUMO

BACKGROUND: Glucose is the main secretagogue of pancreatic beta-cells. Uptake and metabolism of the nutrient stimulates the beta-cell to release the blood glucose lowering hormone insulin. This metabolic activation is associated with a pronounced increase in mitochondrial respiration. Glucose stimulation also initiates a number of signal transduction pathways for the coordinated regulation of multiple biological processes required for insulin secretion. METHODS: Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on lysates from glucose-stimulated INS-1E cells was used to identify glucose regulated phosphorylated proteins and signal transduction pathways. Kinase substrate enrichment analysis (KSEA) was applied to identify key regulated kinases and phosphatases. Glucose-induced oxygen consumption was measured using a XF96 Seahorse instrument to reveal cross talk between glucose-regulated kinases and mitochondrial activation. RESULTS: Our kinetic analysis of substrate phosphorylation reveal the molecular mechanism leading to rapid activation of insulin biogenesis, vesicle trafficking, insulin granule exocytosis and cytoskeleton remodeling. Kinase-substrate enrichment identified upstream kinases and phosphatases and time-dependent activity changes during glucose stimulation. Activity trajectories of well-known glucose-regulated kinases and phosphatases are described. In addition, we predict activity changes in a number of kinases including NUAK1, not or only poorly studied in the context of the pancreatic beta-cell. Furthermore, we pharmacologically tested whether signaling pathways predicted by kinase-substrate enrichment analysis affected glucose-dependent acceleration of mitochondrial respiration. We find that phosphoinositide 3-kinase, Ca2+/calmodulin dependent protein kinase and protein kinase C contribute to short-term regulation of energy metabolism. CONCLUSIONS: Our results provide a global view into the regulation of kinases and phosphatases in insulin secreting cells and suggest cross talk between glucose-induced signal transduction and mitochondrial activation.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Cinética , Camundongos , Mitocôndrias/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteômica , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo
7.
FASEB J ; 31(3): 1028-1045, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927723

RESUMO

Mitochondria play a central role in pancreatic ß-cell nutrient sensing by coupling their metabolism to plasma membrane excitability and insulin granule exocytosis. Whether non-nutrient secretagogues stimulate mitochondria as part of the molecular mechanism to promote insulin secretion is not known. Here, we show that PKC signaling, which is employed by many non-nutrient secretagogues, augments mitochondrial respiration in INS-1E (rat insulinoma cell line clone 1E) and human pancreatic ß cells. The phorbol ester, phorbol 12-myristate 13-acetate, accelerates mitochondrial respiration at both resting and stimulatory glucose concentrations. A range of inhibitors of novel PKC isoforms prevent phorbol ester-induced respiration. Respiratory response was blocked by oligomycin that demonstrated PKC-dependent acceleration of mitochondrial ATP synthesis. Enhanced respiration was observed even when glycolysis was bypassed or fatty acid transport was blocked, which suggested that PKC regulates mitochondrial processes rather than upstream catabolic fluxes. A phosphoproteome study of phorbol ester-stimulated INS-1E cells maintained under resting (2.5 mM) glucose revealed a large number of phosphorylation sites that were altered during short-term activation of PKC signaling. The data set was enriched for proteins that are involved in gene expression, cytoskeleton remodeling, secretory vesicle transport, and exocytosis. Interactome analysis identified PKC, C-Raf, and ERK1/2 as the central phosphointeraction cluster. Prevention of ERK1/2 signaling by using a MEK1 inhibitor caused a marked decreased in phorbol 12-myristate 13-acetate-induced mitochondrial respiration. ERK1/2 signaling module therefore links PKC activation to downstream mitochondrial activation. We conclude that non-nutrient secretagogues act, in part, via PKC and downstream ERK1/2 signaling to stimulate mitochondrial energy production to compensate for energy expenditure that is linked to ß-cell activation.-Santo-Domingo, J., Chareyron, I., Dayon, L., Galindo, A. N., Cominetti, O., Giménez, M. P. G., De Marchi, U., Canto, C., Kussmann, M., Wiederkehr, A. Coordinated activation of mitochondrial respiration and exocytosis mediated by PKC signaling in pancreatic ß cells.


Assuntos
Exocitose , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Proteína Quinase C/metabolismo , Explosão Respiratória , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligomicinas/farmacologia , Proteínas Proto-Oncogênicas c-raf/metabolismo
8.
Exp Cell Res ; 357(2): 170-180, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527697

RESUMO

Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed, respiration, mitonuclear protein imbalance or down-stream signaling may be altered.


Assuntos
Antibacterianos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Consumo de Oxigênio/fisiologia , Células PC12 , Neoplasias Pancreáticas/metabolismo , Ratos , Respiração/efeitos dos fármacos
9.
BMC Genomics ; 18(1): 326, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441938

RESUMO

BACKGROUND: Mitochondrial dysfunction is linked to numerous pathological states, in particular related to metabolism, brain health and ageing. Nuclear encoded gene polymorphisms implicated in mitochondrial functions can be analyzed in the context of classical genome wide association studies. By contrast, mitochondrial DNA (mtDNA) variants are more challenging to identify and analyze for several reasons. First, contrary to the diploid nuclear genome, each cell carries several hundred copies of the circular mitochondrial genome. Mutations can therefore be present in only a subset of the mtDNA molecules, resulting in a heterogeneous pool of mtDNA, a situation referred to as heteroplasmy. Consequently, detection and quantification of variants requires extremely accurate tools, especially when this proportion is small. Additionally, the mitochondrial genome has pseudogenized into numerous copies within the nuclear genome over the course of evolution. These nuclear pseudogenes, named NUMTs, must be distinguished from genuine mtDNA sequences and excluded from the analysis. RESULTS: Here we describe a novel method, named MitoRS, in which the entire mitochondrial genome is amplified in a single reaction using rolling circle amplification. This approach is easier to setup and of higher throughput when compared to classical PCR amplification. Sequencing libraries are generated at high throughput exploiting a tagmentation-based method. Fine-tuned parameters are finally applied in the analysis to allow detection of variants even of low frequency heteroplasmy. The method was thoroughly benchmarked in a set of experiments designed to demonstrate its robustness, accuracy and sensitivity. The MitoRS method requires 5 ng total DNA as starting material. More than 96 samples can be processed in less than a day of laboratory work and sequenced in a single lane of an Illumina HiSeq flow cell. The lower limit for accurate quantification of single nucleotide variants has been measured at 1% frequency. CONCLUSIONS: The MitoRS method enables the robust, accurate, and sensitive analysis of a large number of samples. Because it is cost effective and simple to setup, we anticipate this method will promote the analysis of mtDNA variants in large cohorts, and may help assessing the impact of mtDNA heteroplasmy on metabolic health, brain function, cancer progression, or ageing.


Assuntos
DNA Mitocondrial/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Mitocondrial/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
10.
FASEB J ; 30(5): 1913-26, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839375

RESUMO

Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 µM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 µM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.


Assuntos
Astrócitos/fisiologia , Ácidos Graxos/farmacologia , Corpos Cetônicos/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina/biossíntese , Células Cultivadas , Glicólise , Humanos , Oxirredução , Consumo de Oxigênio , Células-Tronco Pluripotentes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Biol Chem ; 290(7): 4086-96, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548283

RESUMO

In pancreatic ß-cells, ATP acts as a signaling molecule initiating plasma membrane electrical activity linked to Ca(2+) influx, which triggers insulin exocytosis. The mitochondrial Ca(2+) uniporter (MCU) mediates Ca(2+) uptake into the organelle, where energy metabolism is further stimulated for sustained second phase insulin secretion. Here, we have studied the contribution of the MCU to the regulation of oxidative phosphorylation and metabolism-secretion coupling in intact and permeabilized clonal ß-cells as well as rat pancreatic islets. Knockdown of MCU with siRNA transfection blunted matrix Ca(2+) rises, decreased nutrient-stimulated ATP production as well as insulin secretion. Furthermore, MCU knockdown lowered the expression of respiratory chain complexes, mitochondrial metabolic activity, and oxygen consumption. The pH gradient formed across the inner mitochondrial membrane following nutrient stimulation was markedly lowered in MCU-silenced cells. In contrast, nutrient-induced hyperpolarization of the electrical gradient was not altered. In permeabilized cells, knockdown of MCU ablated matrix acidification in response to extramitochondrial Ca(2+). Suppression of the putative Ca(2+)/H(+) antiporter leucine zipper-EF hand-containing transmembrane protein 1 (LETM1) also abolished Ca(2+)-induced matrix acidification. These results demonstrate that MCU-mediated Ca(2+) uptake is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Canais de Cálcio/química , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Proliferação de Células , Células Cultivadas , Metabolismo Energético , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Técnicas Imunoenzimáticas , Secreção de Insulina , Células Secretoras de Insulina/citologia , Insulinoma/genética , Insulinoma/patologia , Masculino , Potencial da Membrana Mitocondrial , Fosforilação Oxidativa , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Biol Chem ; 289(13): 9182-94, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24554722

RESUMO

Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)(+) ratio.


Assuntos
Complexos de ATP Sintetase/metabolismo , Cálcio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Ratos
13.
J Biol Chem ; 289(29): 20377-85, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24898248

RESUMO

Mitochondria capture and subsequently release Ca(2+) ions, thereby sensing and shaping cellular Ca(2+) signals. The Ca(2+) uniporter MCU mediates Ca(2+) uptake, whereas NCLX (mitochondrial Na/Ca exchanger) and LETM1 (leucine zipper-EF-hand-containing transmembrane protein 1) were proposed to exchange Ca(2+) against Na(+) or H(+), respectively. Here we study the role of these ion exchangers in mitochondrial Ca(2+) extrusion and in Ca(2+)-metabolic coupling. Both NCLX and LETM1 proteins were expressed in HeLa cells mitochondria. The rate of mitochondrial Ca(2+) efflux, measured with a genetically encoded indicator during agonist stimulations, increased with the amplitude of mitochondrial Ca(2+) ([Ca(2+)]mt) elevations. NCLX overexpression enhanced the rates of Ca(2+) efflux, whereas increasing LETM1 levels had no impact on Ca(2+) extrusion. The fluorescence of the redox-sensitive probe roGFP increased during [Ca(2+)]mt elevations, indicating a net reduction of the matrix. This redox response was abolished by NCLX overexpression and restored by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The [Ca(2+)]mt elevations were associated with increases in the autofluorescence of NAD(P)H, whose amplitude was strongly reduced by NCLX overexpression, an effect reverted by Na(+)/Ca(2+) exchange inhibition. We conclude that NCLX, but not LETM1, mediates Ca(2+) extrusion from mitochondria. By controlling the duration of matrix Ca(2+) elevations, NCLX contributes to the regulation of NAD(P)H production and to the conversion of Ca(2+) signals into redox changes.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Clonazepam/análogos & derivados , Clonazepam/farmacologia , Células HeLa , Humanos , Cinética , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , NAD/biossíntese , NADP/biossíntese , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/genética , Tiazepinas/farmacologia
14.
Am J Physiol Endocrinol Metab ; 308(11): E933-41, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852001

RESUMO

Inorganic phosphate (Pi) plays an important role in cell signaling and energy metabolism. In insulin-releasing cells, Pi transport into mitochondria is essential for the generation of ATP, a signaling factor in metabolism-secretion coupling. Elevated Pi concentrations, however, can have toxic effects in various cell types. The underlying molecular mechanisms are poorly understood. Here, we have investigated the effect of Pi on secretory function and apoptosis in INS-1E clonal ß-cells and rat pancreatic islets. Elevated extracellular Pi (1~5 mM) increased the mitochondrial membrane potential (ΔΨm), superoxide generation, caspase activation, and cell death. Depolarization of the ΔΨm abolished Pi-induced superoxide generation. Butylmalonate, a nonselective blocker of mitochondrial phosphate transporters, prevented ΔΨm hyperpolarization, superoxide generation, and cytotoxicity caused by Pi. High Pi also promoted the opening of the mitochondrial permeability transition (PT) pore, leading to apoptosis, which was also prevented by butylmalonate. The mitochondrial antioxidants mitoTEMPO or MnTBAP prevented Pi-triggered PT pore opening and cytotoxicity. Elevated extracellular Pi diminished ATP synthesis, cytosolic Ca(2+) oscillations, and insulin content and secretion in INS-1E cells as well as in dispersed islet cells. These parameters were restored following preincubation with mitochondrial antioxidants. This treatment also prevented high-Pi-induced phosphorylation of ER stress proteins. We propose that elevated extracellular Pi causes mitochondrial oxidative stress linked to mitochondrial hyperpolarization. Such stress results in reduced insulin content and defective insulin secretion and cytotoxicity. Our data explain the decreased insulin content and secretion observed under hyperphosphatemic states.


Assuntos
Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Fosfatos/farmacologia , Animais , Células Cultivadas , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Masculino , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Fosfatos/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Superóxidos/metabolismo
16.
Exp Mol Med ; 56(2): 273-288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297165

RESUMO

Autophagy is an essential quality control mechanism for maintaining organellar functions in eukaryotic cells. Defective autophagy in pancreatic beta cells has been shown to be involved in the progression of diabetes through impaired insulin secretion under glucolipotoxic stress. The underlying mechanism reveals the pathologic role of the hyperactivation of mechanistic target of rapamycin (mTOR), which inhibits lysosomal biogenesis and autophagic processes. Moreover, accumulating evidence suggests that oxidative stress induces Ca2+ depletion in the endoplasmic reticulum (ER) and cytosolic Ca2+ overload, which may contribute to mTOR activation in perilysosomal microdomains, leading to autophagic defects and ß-cell failure due to lipotoxicity. This review delineates the antagonistic regulation of autophagic flux by mTOR and AMP-dependent protein kinase (AMPK) at the lysosomal membrane, and both of these molecules could be activated by perilysosomal calcium signaling. However, aberrant and persistent Ca2+ elevation upon lipotoxic stress increases mTOR activity and suppresses autophagy. Therefore, normalization of autophagy is an attractive therapeutic strategy for patients with ß-cell failure and diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Cálcio , Adenilato Quinase , Autofagia , Serina-Treonina Quinases TOR
17.
Biochim Biophys Acta ; 1823(10): 1815-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22809973

RESUMO

Glucose-induced insulin secretion from pancreatic ß-cells depends on mitochondrial activation. In the organelle, glucose-derived pyruvate is metabolised along the oxidative and anaplerotic pathway to generate downstream signals leading to insulin granule exocytosis. Entry into the oxidative pathway is catalysed by pyruvate dehydrogenase (PDH) and controlled in part by phosphorylation of the PDH E1α subunit blocking enzyme activity. We find that glucose but not other nutrient secretagogues induce PDH E1α phosphorylation in INS-1E cells and rat islets. INS-1E cells and primary ß-cells express pyruvate dehydrogenase kinase (PDK) 1, 2 and 3, which mediate the observed phosphorylation. In INS-1E cells, suppression of the two main isoforms, PDK1 and PDK3, almost completely prevented PDH E1α phosphorylation. Under basal glucose conditions, phosphorylation was barely detectable and therefore the enzyme almost fully active (90% of maximal). During glucose stimulation, PDH is only partially inhibited (to 78% of maximal). Preventing PDH phosphorylation in situ after suppression of PDK1, 2 and 3 neither enhanced pyruvate oxidation nor insulin secretion. In conclusion, although glucose stimulates E1α phosphorylation and therefore inhibits PDH activity, this control mechanism by itself does not alter metabolism-secretion coupling in INS-1E clonal ß-cells.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Animais , Cálcio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Glucose/toxicidade , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/enzimologia , Isoenzimas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Interferente Pequeno/metabolismo , Ratos
18.
EMBO J ; 28(4): 417-28, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19165153

RESUMO

Nutrient secretagogues activate mitochondria of the pancreatic beta-cell through the provision of substrate, hyperpolarisation of the inner mitochondrial membrane and mitochondrial calcium rises. We report that mitochondrial matrix pH, a parameter not previously studied in the beta-cell, also exerts an important control function in mitochondrial metabolism. During nutrient stimulation matrix pH alkalinises, monitored by the mitochondrial targeted fluorescent pH-sensitive protein mtAlpHi or (31)P-NMR inorganic phosphate chemical shifts following saturation transfer. Compared with other cell types, the resting mitochondrial pH was surprisingly low, rising from pH 7.25 to 7.7 during nutrient stimulation of rat beta-cells. As cytosolic alkalinisation to the nutrient was of much smaller amplitude, the matrix alkalinisation was accompanied by a pronounced increase of the DeltapH across the inner mitochondrial membrane. Furthermore, matrix alkalinisation closely correlates with the cytosolic ATP net increase, which is also associated with elevated ATP synthesis rates in mitochondria. Preventing DeltapH increases in permeabilised cells abrogated substrate-driven ATP synthesis. We propose that the mitochondrial pH and DeltapH are key determinants of mitochondrial energy metabolism and metabolite transport important for cell activation.


Assuntos
Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Citosol/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Cinética , Leucina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Fosfatos/química , Ratos
19.
Biochem J ; 441(3): 971-8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22050124

RESUMO

Using the ROS (reactive oxygen species)-sensitive fluorescent dyes dichlorodihydrofluorescein and dihydroethidine, previous studies yielded opposite results about the glucose regulation of oxidative stress in insulin-secreting pancreatic ß-cells. In the present paper, we used the ratiometric fluorescent proteins HyPer and roGFP1 (redox-sensitive green fluorescent protein 1) targeted to mitochondria [mt-HyPer (mitochondrial HyPer)/mt-roGFP1 (mitochondrial roGFP1)] to monitor glucose-induced changes in mitochondrial hydrogen peroxide concentration and glutathione redox state in adenovirus-infected rat islet cell clusters. Because of the reported pH sensitivity of HyPer, the results were compared with those obtained with the mitochondrial pH sensors mt-AlpHi and mt-SypHer. The fluorescence ratio of the mitochondrial probes slowly decreased (mt-HyPer) or increased (mt-roGFP1) in the presence of 10 mmol/l glucose. Besides its expected sensitivity to H2O2, mt-HyPer was also highly pH sensitive. In agreement, changes in mitochondrial metabolism similarly affected mt-HyPer, mt-AlpHi and mt-SypHer fluorescence signals. In contrast, the mt-roGFP1 fluorescence ratio was only slightly affected by pH and reversibly increased when glucose was lowered from 10 to 2 mmol/l. This increase was abrogated by the catalytic antioxidant Mn(III) tetrakis (4-benzoic acid) porphyrin but not by N-acetyl-L-cysteine. In conclusion, due to its pH sensitivity, mt-HyPer is not a reliable indicator of mitochondrial H2O2 in ß-cells. In contrast, the mt-roGFP1 fluorescence ratio monitors changes in ß-cell mitochondrial glutathione redox state with little interference from pH changes. Our results also show that glucose acutely decreases rather than increases mitochondrial thiol oxidation in rat ß-cells.


Assuntos
Glutationa/análise , Proteínas de Fluorescência Verde/análise , Peróxido de Hidrogênio/análise , Células Secretoras de Insulina/química , Medições Luminescentes/métodos , Mitocôndrias/química , Animais , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Cinética , Masculino , Mitocôndrias/metabolismo , Concentração Osmolar , Oxirredução , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade
20.
Br J Pharmacol ; 180(21): 2762-2776, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37277321

RESUMO

BACKGROUND AND PURPOSE: High levels of Ca2+ in the endoplasmic reticulum (ER), established by the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), are required for protein folding and cell signalling. Excessive ER Ca2+ release or decreased SERCA activity induces unfolded protein accumulation and ER stress in pancreatic ß-cells, leading to defective insulin secretion and diabetes. Here we have investigated the consequences of enhancing ER Ca2+ uptake on ß-cell survival and function. EXPERIMENTAL APPROACH: The effects of SERCA activator, CDN1163, on Ca2+ homeostasis, protein expression, mitochondrial activities, insulin secretion, and lipotoxicity have been studied in mouse pancreatic ß-cells and MIN6 cells. KEY RESULTS: CDN1163, increased insulin synthesis and exocytosis from islets. CDN1163 also increased the sensitivity of the cytosolic Ca2+ oscillation response to glucose and potentiated it in dispersed and sorted ß-cells. CDN1163 augmented the ER and mitochondrial Ca2+ content, the mitochondrial membrane potential, respiration, and ATP synthesis. CDN1163 up-regulated expression of inositol 1,4,5-trisphosphate receptors and antioxidant enzymes, and mitochondrial biogenesis, including peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Overexpression of SERCA2a or 2b replicated the effects of CDN1163, while knockdown of SERCA2 abolished the stimulatory actions of CDN1163. In palmitate-treated ß-cells, CDN1163 prevented ER Ca2+ depletion, mitochondrial dysfunction, cytosolic and mitochondrial oxidative stress, defective insulin secretion, and apoptotic cell death. CONCLUSIONS AND IMPLICATIONS: Activation of SERCA enhanced mitochondrial bioenergetics and antioxidant capability, suppressing the cytotoxic effects of palmitate. Our results suggest that targeting SERCA could be a novel therapeutic strategy to protect ß-cells from lipotoxicity and the development of Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Antioxidantes/farmacologia , Retículo Endoplasmático , Mitocôndrias/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Palmitatos/metabolismo , Palmitatos/farmacologia , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA