Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(19): e202300234, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37428636

RESUMO

Phase change materials (PCMs) textiles have been developed for personal thermal management (PTM) while limited loading amount of PCMs in textiles reduced thermal buffering effect. In this work, we proposed a sandwich fibrous encapsulation to store polyethylene glycol (PEG) with PEG loading amount of 45 wt %, which consisted of polyester (PET) fabrics with hydrophobic coating as protection layers, polyurethane (PU) nanofibrous membranes as barrier layers and PEG-loaded viscose fabric as a PCM-loaded layer. The leakage was totally avoided by controlling weak interfacial adhesion between protection layer and melting PEG. The sandwich fibrous PEG encapsulations had an overall melting enthalpy value ranging from 50 J/g to 78 J/g and melting points ranging from 20 °C to 63 °C by using different PEGs. Besides, introduction of Fe microparticles in PCM-loaded layer enhanced thermal energy storage efficiency. We believe that the sandwich fibrous PEG encapsulation has a great potential in various fields.

2.
Sci Rep ; 14(1): 5202, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433241

RESUMO

The acquisition of clean drinking water in regions with limited power sources has been a challenge of paramount concern. Solar stills have emerged as a popular and sustainable option for obtaining clean water in such regions. This process involves employing solar radiation to heat up water, which is then condensed to obtain potable water. The present study introduces a solar still system that is both cost-effective and energy-efficient, while simultaneously ensuring sustainability. Fabric-coated polyurethane rollers with capillary action enhance evaporation area, leading to notable performance improvements. Water vapour condensed on the cooling chamber's inclined aluminium plate and collected in the distillate chamber within the solar still. The thermal, energetic, and economic performance and productivity of the proposed model were evaluated. The fabricated solar still boasted maximum instantaneous system efficiency and exergy efficiency of approximately 62.16% and 7.67%, respectively. This system's cost-effectiveness and performance improvements are particularly noteworthy. The daily average distillate productivity of the proposed still was estimated at 1.14 L/m2, resulting in an annual production rate of 416.54 L/year. The estimated cost of producing 1 L of distillate was 0.023 $.

3.
Sci Rep ; 14(1): 13716, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877151

RESUMO

Expanded graphite has promising potential environmental applications due to its porous structure and oleophilic nature, which allow it to absorb large quantities of oil. The material is produced by intercalating graphite and applying heat to convert the intercalant into gas to cause expansion between the layers in the graphite. Using different intercalants and temperature conditions results in varying properties of expanded graphite. This work has proven that the sorption properties of commercial expanded graphite differ significantly due to the material's structural and elemental characteristics, which can be attributed to the intercalation method. This resulted in various degrees of exfoliation of the graphite and possible functionalisation of the graphene sheets within the structure. This affected the material's sorption capacity and its affinity for heavy metal sorption by incorporating selectivity towards the sorption of certain metals. It was found that sample EG3, which underwent a less harsh expansion, exhibited lower porosity than EG1, and thus, the sample absorbed less oil at 37.29 g/g compared to the more expanded samples EG1 and EG2 with 55.16 g/g and 48.82 g/g, respectively. However, it was able to entrap a wider variety of metal particles compared to EG1 and EG2, possibly due to its smaller cavities allowing for a capillary effect between the graphene sheets and greater Van der Waals forces. A second possibility is that ionic or coordination complexes could form with certain metals due to the possible functionalisation of the expanded graphite during the intercalation process. This would be in addition to coordination between the metals and expanded graphite carbon atoms. The findings suggest that there is evidence of functionalisation as determined by XRD and elemental analyses. However, further investigation is necessary to confirm this hypothesis. The findings in this work suggest that the first mechanism of sorption was more likely to be related to the degree of expansion of the expanded graphite. Various metals are present in used oil, and their removal can be challenging. Some metals in oil are not considered heavy since they have a relatively low density but can be associated with heavy metals in terms of toxicity.

5.
Materials (Basel) ; 17(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203881

RESUMO

Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.

6.
Chempluschem ; 88(4): e202300081, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36951444

RESUMO

Expanded graphite (EG) has been used to store phase change materials (PCM) to enhance thermal conductivity and avoid leakage. However, systematic investigation on physical structure of various embedded PCMs in EG is not reported. Besides, the effect of environment on thermal behavior of PCM/EG composites has not been investigated yet. In this work, three common PCMs (including myristic acid (MA), polyethylene glycol (PEG) and paraffin wax (PW)) were embedded in EG and three PCM/EG composites were obtained. As a result, capillary force between EG and PCMs supported encapsulation of PCMs in EG. PCM/EG composites had narrower phase change range while supercooling degree values were different when various PCMs were used. Besides, the hot and humid environment had a side effect on thermal energy storage of PCMs and PCM/EG composites. The inherent hydrophilicity of PCMs was essential for resistance against side effect of moisture on thermal energy storage.

7.
Polymers (Basel) ; 14(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015672

RESUMO

The aim of the present research work was to develop halogen and formaldehyde-free, durable flame retardant fabric along with multifunctional properties and to find the optimal conditions and parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were grown onto 100% cotton fabric using the sonochemical method. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) were used as precursors. After ZnO NPs growth, N-Methylol dimethylphosphonopropionamide (MDPA) flame retardant was applied in the presence of 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) as cross-linkers using the conventional pad-dry-cure method. Induced coupled plasma atomic emission spectroscopy (ICP-AES) was used to determine the deposited amount of Zn and phosphorous (P) contents. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to determine the surface morphology and characterization of the developed samples. Furthermore, the thermal degradation of the untreated and treated samples was investigated by thermogravimetric analysis (TGA). Furthermore, the vertical flame retardant test, limiting oxygen index (LOI), ultraviolet protection factor (UPF), and antibacterial activity of samples were examined. The developed samples showed excellent results for flame retardancy (i.e., 39 mm char length, 0 s after flame time, 0 s after glow time), 32.2 LOI, 143.76 UPF, and 100% antibacterial activity.

8.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567064

RESUMO

High thermostability of phase change materials is the critical factor for producing phase change thermoregulated fiber (PCTF) by melt spinning. To achieve the production of PCTF from melt spinning, a composite phase change material with high thermostability was developed, and a sheath-core structure of PCTF was also developed from bicomponent melt spinning. The sheath layer was polyamide 6, and the core layer was made from a composite of polyethylene and paraffin. The PCTF was characterized by scanning electron microscopy (SEM), thermal analysis (TG), Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and fiber strength tester. The results showed that the core material had a very high thermostability at a volatilization temperature of 235 °C, the PCTF had an endothermic and exothermic process in the temperature range of 20-30 °C, and the maximum latent heat of the PCTF reached 20.11 J/g. The tenacity of the PCTF gradually decreased and then reached a stable state with the increase of temperature from -25 °C to 80 °C. The PCTF had a tenacity of 343.59 MPa at 0 °C, and of 254.63 MPa at 25 °C, which fully meets the application requirements of fiber in textiles.

9.
Sci Rep ; 11(1): 11032, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040087

RESUMO

Electromagnetically shielding textile materials, especially in professional or ordinary clothing, are used to protect an implanted pacemaker in the body. Alternatively, traditional textiles are known for their non-conductivity and transparency to an electromagnetic field. The main goal of this work was to determine whether the high moisture content (sweat) of the traditional textile structure significantly affects the resulting ability of the material to shield the electromagnetic field. Specifically, whether sufficient wetting of the traditional textile material can increase its electrical conductivity to match the electrically conductive textiles determined for shielding of the electromagnetic field. In this study, cotton and polyester knitted fabric samples were used, and two liquid medias were applied to the samples to simulate human sweating. The experiment was designed to analyse the factors that have a significant effect on the shielding effectiveness that was measured according to ASTM D4935. The following factors have a significant effect on the electromagnetic shielding effectiveness of moisturised fabric: squeezing pressure, drying time and type of liquid media. Additionally, the increase of electromagnetic shielding was up to 1 dB at 1.5 GHz frequency at the highest level of artificial sweat moisturised sample.

10.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012069

RESUMO

This paper presents the preparation of aerogel/polytetrafluoroethylene (PTFE) microporous materials via needleless electrospray technique, by using an aqueous dispersion of polytetrafluoroethylene as the basic spinning liquid. Different contents of aerogel powders were applied to the spinning liquid for electrospraying to investigate the effect on the structural characteristics and various properties of the materials. Cross-section, surface morphology, and particle size distribution of the electrosprayed materials were examined. Surface roughness, hydrophobicity, and thermal conductivity were evaluated and discussed. The results showed that the electrosprayed aerogel/PTFE layers were compact and disordered stacking structures composed of spherical particles with a rough surface. As the aerogel content increased, the electrosprayed materials demonstrated increased surface roughness and improved surface hydrophobicity with a contact angle up to 147.88°. In addition, the successful achievement of thermal conductivity as low as 0.024 (W m-1 K-1) indicated a superior ability of the prepared aerogel/PTFE composites to prevent heat transfer. This study contributes to the field of development of aerogel/PTFE composites via electrospray technique, providing enhanced final performance for potential use as thermal and moisture barriers in textiles or electronic devices.

11.
Materials (Basel) ; 14(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300877

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have acquired great significance in the textile sector due to their impressive efficiency and multifold utilization, such as antimicrobials, UV protection, photo catalytic activity, and self-cleaning. The aim of this work is in-situ growth of ZnO NPs on 100% cotton fabrics with the one-step hydrothermal method for preparation of multifunctional textile with UV protecting, antibacterial, and photo catalytic properties. Sodium hydroxide (NaOH) and Zinc nitrate hexahydrate [Zn(NO3)2·6H2O] were used as reactants for the growth of zinc oxide on the 100% cotton fabrics. The loaded amount of Zn contents on the cotton fabric was determined by using induced coupled plasma atomic emission spectroscopy (ICP-AES). The surface morphological characterization of deposited ZnO NPs was examined, employing scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and, Fourier- transform infrared spectroscopy (FTIR). The characterization results showed the presence of ZnO NPs on cotton fabrics having hexagonal wurtzite crystalline structure. The synthesized ZnO NPs on fabrics exhibited promising results for antibacterial, UV protection, and photo catalytic performance.

12.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209015

RESUMO

P-aminophenol is a hazardous environmental pollutant that can remain in water in the natural environment for long periods due to its resistance to microbiological degradation. In order to decompose p-aminophenol in water, manganese oxide/polytetrafluoroethylene (PTFE) hollow fiber membranes were prepared. MnO2 and Mn3O4 were synthesized and stored in PTFE hollow fiber membranes by injecting MnSO4·H2O, KMnO4, NaOH, and H2O2 solutions into the pores of the PTFE hollow fiber membrane. The resultant MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG). The phenol catalytic degradation performance of the hollow fiber membranes was evaluated under various conditions, including flux, oxidant content, and pH. The results showed that a weak acid environment and a decrease in flux were beneficial to the catalytic degradation performance of manganese oxide/PTFE hollow fiber membranes. The catalytic degradation efficiencies of the MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 70% and 37% when a certain concentration of potassium monopersulfate (PMS) was added, and the catalytic degradation efficiencies of MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 50% and 35% when a certain concentration of H2O2 was added. Therefore, the manganese oxide/PTFE hollow fiber membranes represent a good solution for the decomposition of p-aminophenol.

13.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924470

RESUMO

COVID-19, classified as SARS-CoV-2, is causing an ongoing global pandemic. The pandemic has resulted in the loss of lives and has caused economic hardships. Most of the devices used to protect against the transmission of the novel COVID-19 disease are related to textile structures. Hence, the challenge for textile professionals is to design and develop suitable textile structures with multiple functionalities for capturing viruses, passivating them, and, at the same time, having no adverse effects on humans during the complete period of use. In addition to manufacturing efficient, biocompatible, and cost-effective protective face masks, it is also necessary to inform the public about the benefits and risks of protective face mask materials. The purpose of this article is to address the concerns of efficiency and efficacy of face masks by primarily reviewing the literature of research conducted at the Technical University of Liberec. The main focus is on the presentation of problems related to the specification of aims of face mask applications, mechanisms of capture, durability, and modes of sterilization. The recommendations, instead of conclusions, are addressed to the whole textile society because they should be leading players in the design, creation, and proper treatment of face masks due to their familiarity with the complex behavior of textile structures and targeted changes of structural hierarchy starting from polymeric chains (nano-level) and ending in planar textile structures (millimeter level) due to action by mechanical, physical and chemical fields. This becomes extremely critical to saving hundreds of thousands of lives from COVID-19.

14.
ACS Appl Mater Interfaces ; 12(6): 7736-7743, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31945290

RESUMO

The growing concerns over desertification have spurred research into technologies aimed at acquiring water from nontraditional sources such as dew, fog, and water vapor. Some of the most promising developments have focused on improving designs to collect water from fog. However, the absence of a shared framework to predict, measure, and compare the water collection efficiencies of new prototypes is becoming a major obstacle to progress in the field. We address this problem by providing a general theory to design efficient fog collectors as well as a concrete experimental protocol to furnish our theory with all the necessary parameters to quantify the effective water collection efficiency. We show in particular that multilayer collectors are required for high fog collection efficiency and that all efficient designs are found within a narrow range of mesh porosity. We support our conclusions with measurements on simple multilayer harp collectors.

15.
Ultrasonics ; 83: 203-213, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28655399

RESUMO

Highly photo active pure anatase form of TiO2 nanoparticles with average particle size 4nm have been successfully synthesized by ultrasonic acoustic method (UAM). The effects of process variables i.e. precursors concentration and sonication time were investigated based on central composite design and response surface methodology. The characteristics of the resulting nanoparticles (RNP) were analyzed by scanning electron microscopy, dynamic light scattering, transmission electron microscopy, X-ray diffractometry and Raman spectroscopy. Photocatalytic experiments were performed with methylene blue dye which is considered as model organic pollutant in textile industry. A comparative analysis between the RNP and commercially available Degussa P25 for photocatalytic performance against dye removal efficiency was performed. The rapid removal of methylene blue in case of RNP indicates their higher photocatalytic activity than P25. Maximum dye removal efficiency 98.45% was achieved with optimal conditions i.e. TTIP conc. 10mL, EG conc. 4mL and sonication time 1h. Interestingly, no significant difference was found in the photocatalytic performance of RNP after calcination. Moreover, self-cleaning efficiency of RNP deposited on cotton was evaluated in RGB color space. The obtained results indicate the significant impact of ultrasonic irradiations on the photocatalytic performance of pure anatase form than any other hybrid type of TiO2 nanoparticles.

16.
Ultrason Sonochem ; 40(Pt A): 41-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946440

RESUMO

Cotton-titania nanocomposites with multifunctional properties were synthesized through ultrasonic acoustic method (UAM). Ultrasonic irradiations were used as a potential tool to develop cotton-titania (CT) nanocomposites at low temperature in the presence of titanium tetrachloride and isopropanol. The synthesized samples were characterized by XRD, SEM, EDX and ICP-OES methods. Functional properties i.e. Ultraviolet protection factor (UPF), self-cleaning, washing durability, antimicrobial and tensile strength of the CT nanocomposites were evaluated by different methods. Central composite design and response surface methodology were employed to evaluate the effects of selected variables on responses. The results confirm the simultaneous formation and incorporation of anatase TiO2 with average crystallite size of 4nm on cotton fabric with excellent photocatalytic properties. The sustained self-cleaning efficiency of CT nanocomposites even after 30 home launderings indicates their excellent washing durability. Significant effects were obtained during statistical analysis for selected variables on the formation and incorporation of TiO2 nanoparticles (NPs) on cotton and photocatalytic properties of the CT nanocomposites.

17.
Carbohydr Polym ; 150: 107-13, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27312619

RESUMO

A new route to make cotton fabric self-cleaning and permanently stiff by coating cellulose-TiO2 on its surface is demonstrated herein. Cellulose-TiO2 dispersion was used for coating and was prepared by mixing TiO2 nanoparticles with cellulose in 60% H2SO4 solution. The surface morphology of cellulose-TiO2 nanoparticles coated sample was analyzed by SEM. The appearance of white TiO2 particles on the surface of the cotton fabric confirmed the successful coating process. The Orange II dye was used as stain and its degradation was observed under UV light. X-ray diffraction analysis showed that cellulose II content increases slightly (by 5.3%) after the solvent treatment. Washing fastness study showed that the fabric stiffness was permanent and self-cleaning properties were stable with 1, 3 and 5% TiO2 coated samples. Air and water vapor permeability was not decreased considerably, whereas tensile strength was increased significantly after coating.


Assuntos
Celulose/química , Fibra de Algodão , Fenômenos Mecânicos , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Ar , Catálise , Vapor , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA