Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Chip ; 21(24): 4831-4845, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34821226

RESUMO

The practice of serial X-ray crystallography (SX) depends on efficient, continuous delivery of hydrated protein crystals while minimizing background scattering. Of the two major types of sample delivery devices, fixed-target devices offer several advantages over widely adopted jet injectors, including: lower sample consumption, clog-free delivery, and the ability to control on-chip crystal density to improve hit rates. Here we present our development of versatile, inexpensive, and robust polymer microfluidic chips for routine and reliable room temperature serial measurements at both synchrotrons and X-ray free electron lasers (XFELs). Our design includes highly X-ray-transparent enclosing thin film layers tuned to minimize scatter background, adaptable sample flow layers tuned to match crystal size, and a large sample area compatible with both raster scanning and rotation based serial data collection. The optically transparent chips can be used both for in situ protein crystallization (to eliminate crystal handling) or crystal slurry loading, with prepared samples stable for weeks in a humidified environment and for several hours in ambient conditions. Serial oscillation crystallography, using a multi-crystal rotational data collection approach, at a microfocus synchrotron beamline (SSRL, beamline 12-1) was used to benchmark the performance of the chips. High-resolution structures (1.3-2.7 Å) were collected from five different proteins - hen egg white lysozyme, thaumatin, bovine liver catalase, concanavalin-A (type VI), and SARS-CoV-2 nonstructural protein NSP5. Overall, our modular fabrication approach enables precise control over the cross-section of materials in the X-ray beam path and facilitates chip adaption to different sample and beamline requirements for user-friendly, straightforward diffraction measurements at room temperature.


Assuntos
COVID-19 , Microfluídica , Animais , Bovinos , Cristalografia por Raios X , Desenho de Equipamento , Humanos , Polímeros , SARS-CoV-2 , Temperatura
2.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853786

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Assuntos
Domínio Catalítico/fisiologia , Ligação Proteica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Tratamento Farmacológico da COVID-19
3.
bioRxiv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269349

RESUMO

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

4.
IUCrJ ; 6(Pt 2): 305-316, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867928

RESUMO

A fixed-target approach to high-throughput room-temperature serial synchrotron crystallography with oscillation is described. Patterned silicon chips with microwells provide high crystal-loading density with an extremely high hit rate. The microfocus, undulator-fed beamline at CHESS, which has compound refractive optics and a fast-framing detector, was built and optimized for this experiment. The high-throughput oscillation method described here collects 1-5° of data per crystal at room temperature with fast (10°â€…s-1) oscillation rates and translation times, giving a crystal-data collection rate of 2.5 Hz. Partial datasets collected by the oscillation method at a storage-ring source provide more complete data per crystal than still images, dramatically lowering the total number of crystals needed for a complete dataset suitable for structure solution and refinement - up to two orders of magnitude fewer being required. Thus, this method is particularly well suited to instances where crystal quantities are low. It is demonstrated, through comparison of first and last oscillation images of two systems, that dose and the effects of radiation damage can be minimized through fast rotation and low angular sweeps for each crystal.

6.
IUCrJ ; 5(Pt 5): 548-558, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224958

RESUMO

In recent years, the success of serial femtosecond crystallography and the paucity of beamtime at X-ray free-electron lasers have motivated the development of serial microcrystallography experiments at storage-ring synchrotron sources. However, especially at storage-ring sources, if a crystal is too small it will have suffered significant radiation damage before diffracting a sufficient number of X-rays into Bragg peaks for peak-indexing software to determine the crystal orientation. As a consequence, the data frames of small crystals often cannot be indexed and are discarded. Introduced here is a method based on the expand-maximize-compress (EMC) algorithm to solve protein structures, specifically from data frames for which indexing methods fail because too few X-rays are diffracted into Bragg peaks. The method is demonstrated on a real serial microcrystallography data set whose signals are too weak to be indexed by conventional methods. In spite of the daunting background scatter from the sample-delivery medium, it was still possible to solve the protein structure at 2.1 Šresolution. The ability of the EMC algorithm to analyze weak data frames will help to reduce sample consumption. It will also allow serial microcrystallography to be performed with crystals that are otherwise too small to be feasibly analyzed at storage-ring sources.

7.
J Appl Crystallogr ; 50(Pt 4): 985-993, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808431

RESUMO

Recently, there has been a growing interest in adapting serial microcrystallography (SMX) experiments to existing storage ring (SR) sources. For very small crystals, however, radiation damage occurs before sufficient numbers of photons are diffracted to determine the orientation of the crystal. The challenge is to merge data from a large number of such 'sparse' frames in order to measure the full reciprocal space intensity. To simulate sparse frames, a dataset was collected from a large lysozyme crystal illuminated by a dim X-ray source. The crystal was continuously rotated about two orthogonal axes to sample a subset of the rotation space. With the EMC algorithm [expand-maximize-compress; Loh & Elser (2009). Phys. Rev. E, 80, 026705], it is shown that the diffracted intensity of the crystal can still be reconstructed even without knowledge of the orientation of the crystal in any sparse frame. Moreover, parallel computation implementations were designed to considerably improve the time and memory scaling of the algorithm. The results show that EMC-based SMX experiments should be feasible at SR sources.

8.
IUCrJ ; 3(Pt 1): 43-50, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26870380

RESUMO

X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so 'sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using the EMC algorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ∼200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using the EMC algorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. This suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the EMC algorithm even in cases where the data are sparse.

9.
IUCrJ ; 2(Pt 1): 29-34, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25610625

RESUMO

X-ray serial microcrystallography involves the collection and merging of frames of diffraction data from randomly oriented protein microcrystals. The number of diffracted X-rays in each frame is limited by radiation damage, and this number decreases with crystal size. The data in the frame are said to be sparse if too few X-rays are collected to determine the orientation of the microcrystal. It is commonly assumed that sparse crystal diffraction frames cannot be merged, thereby setting a lower limit to the size of microcrystals that may be merged with a given source fluence. The EMC algorithm [Loh & Elser (2009 ▶), Phys. Rev. E, 80, 026705] has previously been applied to reconstruct structures from sparse noncrystalline data of objects with unknown orientations [Philipp et al. (2012 ▶), Opt. Express, 20, 13129-13137; Ayyer et al. (2014 ▶), Opt. Express, 22, 2403-2413]. Here, it is shown that sparse data which cannot be oriented on a per-frame basis can be used effectively as crystallographic data. As a proof-of-principle, reconstruction of the three-dimensional diffraction intensity using sparse data frames from a 1.35 kDa molecule crystal is demonstrated. The results suggest that serial microcrystallography is, in principle, not limited by the fluence of the X-ray source, and collection of complete data sets should be feasible at, for instance, storage-ring X-ray sources.

10.
IUCrJ ; 2(Pt 5): 601, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26306201

RESUMO

The name of one of the authors in the article by Heymann et al. [(2014), IUCrJ, 1, 349-360] is corrected.[This corrects the article DOI: 10.1107/S2052252514016960.].

11.
IUCrJ ; 1(Pt 5): 349-60, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25295176

RESUMO

An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

12.
J Appl Crystallogr ; 46(Pt 1): 234-241, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396891

RESUMO

High-pressure cryocooling has been developed as an alternative method for cryopreservation of macromolecular crystals and successfully applied for various technical and scientific studies. The method requires the preservation of crystal hydration as the crystal is pressurized with dry helium gas. Previously, crystal hydration was maintained either by coating crystals with a mineral oil or by enclosing crystals in a capillary which was filled with crystallization mother liquor. These methods are not well suited to weakly diffracting crystals because of the relatively high background scattering from the hydrating materials. Here, an alternative method of crystal hydration, called capillary shielding, is described. The specimen is kept hydrated via vapor diffusion in a shielding capillary while it is being pressure cryocooled. After cryocooling, the shielding capillary is removed to reduce background X-ray scattering. It is shown that, compared to previous crystal-hydration methods, the new hydration method produces superior crystal diffraction with little sign of crystal damage. Using the new method, a weakly diffracting protein crystal may be properly pressure cryo-cooled with little or no addition of external cryoprotectants, and significantly reduced background scattering can be observed from the resulting sample. Beyond the applications for macromolecular crystallography, it is shown that the method has great potential for the preparation of noncrystalline hydrated biological samples for coherent diffraction imaging with future X-ray sources.

13.
J Appl Crystallogr ; 46(Pt 5): 1501-1507, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068843

RESUMO

The overall signal-to-noise ratio per unit dose for X-ray diffraction data from protein crystals can be improved by reducing the mass and density of all material surrounding the crystals. This article demonstrates a path towards the practical ultimate in background reduction by use of atomically thin graphene sheets as a crystal mounting platform for protein crystals. The results show the potential for graphene in protein crystallography and other cases where X-ray scatter from the mounting material must be reduced and specimen dehydration prevented, such as in coherent X-ray diffraction imaging of microscopic objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA