Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 21(3): 331-342, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066950

RESUMO

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Assuntos
Linfócitos B/metabolismo , Ácidos Graxos/metabolismo , Centro Germinativo/metabolismo , Animais , Linfócitos B/imunologia , Proliferação de Células , Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Glucose/metabolismo , Glicólise/genética , Técnicas In Vitro , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio
2.
Nat Immunol ; 20(6): 736-746, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011187

RESUMO

B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. In GCBC, BCR signals are constrained, but the mechanisms are not well understood. Here we describe a GC-specific, AKT-kinase-driven negative feedback loop that attenuates BCR signaling. Mass spectrometry revealed that AKT target activity was altered in GCBCs compared with naive B cells. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn controlled by GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. We found that phosphorylation enhances enzymatic activity of these proteins, creating a negative feedback loop that dampens upstream BCR signaling. AKT inhibition relieved this negative feedback and enhanced activation of BCR-proximal kinase LYN, as well as downstream BCR signaling molecules in GCBCs.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Centro Germinativo/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Biologia Computacional/métodos , Ativação Enzimática , Técnicas de Inativação de Genes , Humanos , Camundongos Knockout , Fosforilação , Especificidade por Substrato
3.
PLoS Pathog ; 16(4): e1008527, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348365

RESUMO

The co-stimulatory molecule ICOS is associated with the induction and regulation of T helper cell responses, including the differentiation of follicular helper T (Tfh) cells and the formation and maintenance of memory T cells. However, the role of ICOS signaling in secondary immune responses is largely unexplored. Here we show that memory T cell formation and maintenance are influenced by persistent infection with P. chabaudi chabaudi AS infection, as memory T cell numbers decline in wild-type and Icos-/- mice after drug-clearance. Following drug-clearance Icos-/- mice display a relapsing parasitemia that occurs more frequently and with higher peaks compared to wild-type mice after re-challenge. The secondary immune response in Icos-/- mice is characterized by significant impairment in the expansion of effector cells with a Tfh-like phenotype, which is associated with a diminished and delayed parasite-specific Ab response and the absence of germinal centers. Similarly, the administration of an anti-ICOSL antagonizing antibody to wild-type mice before and after reinfection with P. c. chabaudi AS leads to an early defect in Tfh cell expansion and parasite-specific antibody production, confirming a need for ICOS-ICOSL interactions to promote memory B cell responses. Furthermore, adoptive transfer of central memory T (TCM) cells from wild-type and Icos-/- mice into tcrb-/- mice to directly evaluate the ability of TCM cells to give rise to Tfh cells revealed that TCM cells from wild-type mice acquire a mixed Th1- and Tfh-like phenotype after P. c. chabaudi AS infection. While TCM cells from Icos-/- mice expand and display markers of activation to a similar degree as their WT counterparts, they displayed a reduced capacity to upregulate markers indicative of a Tfh cell phenotype, resulting in a diminished humoral response. Together these findings verify that ICOS signaling in memory T cells plays an integral role in promoting T cell effector responses during secondary infection with P. c. chabaudi AS.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Imunidade Humoral/imunologia , Memória Imunológica , Ativação Linfocitária/imunologia , Malária/imunologia , Malária/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi/metabolismo , Plasmodium chabaudi/patogenicidade , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/metabolismo
4.
J Immunol ; 196(2): 778-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667167

RESUMO

Blood-stage Plasmodium chabaudi chabaudi AS infection requires cell- and Ab-mediated immunity to control acute and persistent infection, respectively. ICOS regulates CD4(+) T cell activation and promotes the induction of follicular Th (TFH) cells, CD4(+) T cells that support B cell affinity maturation within germinal centers (GCs), resulting in the production of high-affinity Abs. In this article, we demonstrate that, in response to P. c. chabaudi AS infection, the absence of ICOS resulted in an enhanced Th1 immune response that reduced peak parasitemia. Despite the absence of ICOS, CD4(+) T cells were capable of expressing PD-1, B cell lymphoma 6, and CXCR5 during early infection, indicating TFH development was not impaired. However, by day 21 postinfection, Icos(-/-) mice accumulated fewer splenic TFHs compared with Icos(+/+) mice, leading to substantially fewer GC B cells and a decrease in affinity, but not production, of parasite-specific isotype-switched Abs. Moreover, treatment of mice with anti-ICOS ligand Abs to modulate ICOS-ICOS ligand signaling revealed a requirement for ICOS in TFH differentiation only after day 6 postinfection. Ultimately, the quality and quantity of isotype-switched Abs produced in Icos(-/-) mice declined over time, resulting in impaired control of persistent parasitemia. Collectively, these data suggest ICOS is not required for TFH induction during P. c. chabaudi AS infection or production of isotype-switched Abs, but it is necessary for maintenance of a sustained high-affinity, protective Ab response.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Centro Germinativo/citologia , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi , Células Th1/imunologia
5.
J Immunol ; 197(5): 1788-800, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448588

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) function to replenish the immune cell repertoire under steady-state conditions and in response to inflammation due to infection or stress. Whereas the bone marrow serves as the primary niche for hematopoiesis, extramedullary mobilization and differentiation of HSPCs occur in the spleen during acute Plasmodium infection, a critical step in the host immune response. In this study, we identified an atypical HSPC population in the spleen of C57BL/6 mice, with a lineage(-)Sca-1(+)c-Kit(-) (LSK(-)) phenotype that proliferates in response to infection with nonlethal Plasmodium yoelii 17X. Infection-derived LSK(-) cells upon transfer into naive congenic mice were found to differentiate predominantly into mature follicular B cells. However, when transferred into infection-matched hosts, infection-derived LSK(-) cells gave rise to B cells capable of entering into a germinal center reaction, and they developed into memory B cells and Ab-secreting cells that were capable of producing parasite-specific Abs. Differentiation of LSK(-) cells into B cells in vitro was enhanced in the presence of parasitized RBC lysate, suggesting that LSK(-) cells expand and differentiate in direct response to the parasite. However, the ability of LSK(-) cells to differentiate into B cells was not dependent on MyD88, as myd88(-/-) LSK(-) cell expansion and differentiation remained unaffected after Plasmodium infection. Collectively, these data identify a population of atypical lymphoid progenitors that differentiate into B lymphocytes in the spleen and are capable of contributing to the ongoing humoral immune response against Plasmodium infection.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Linfócitos B/imunologia , Malária/imunologia , Células Precursoras de Linfócitos B/imunologia , Baço/citologia , Animais , Linfócitos B/metabolismo , Linfócitos B/fisiologia , Diferenciação Celular/imunologia , Proliferação de Células , Imunidade Humoral , Memória Imunológica , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Plasmodium yoelii/imunologia , Plasmodium yoelii/fisiologia , Células Precursoras de Linfócitos B/fisiologia , Transdução de Sinais , Baço/imunologia
6.
Front Immunol ; 9: 2277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374346

RESUMO

Early plasmablast induction is a hallmark of Plasmodium infection and is thought to contribute to the control of acute parasite burden. Although long understood to be a T-cell dependent phenomenon, regulation of early plasmablast differentiation, however, is poorly understood. Here, we identify a population of CD4+ T cells that express the innate NK cell marker NK1.1 as an important source of T cell help for early plasmablast and parasite-specific Ab production. Interestingly, NK1.1+ CD4+ T cells arise from conventional, naive NK1.1- CD4+ T cells, and their generation is independent of CD1d but critically reliant on MHC-II. CD4+ T cells that express NK1.1 early after activation produce IFN-γ and IL-21, and express the follicular helper T (Tfh) cell markers ICOS, PD-1 and CXCR5 more frequently than NK1.1- CD4+ T cells. Further analysis of this population revealed that NK1.1+ Tfh-like cells were more regularly complexed with plasmablasts than NK1.1- Tfh-like cells. Ultimately, depletion of NK1.1+ cells impaired class-switched parasite-specific antibody production during early Plasmodium yoelii infection. Together, these data suggest that expression of NK1.1 defines a population of rapidly expanding effector CD4+ T cells that specifically promote plasmablast induction during Plasmodium infection and represent a subset of T cells whose modulation could promote effective vaccine design.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos Ly/imunologia , Linfócitos T CD4-Positivos/imunologia , Malária/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Plasmodium yoelii/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Expressão Gênica/imunologia , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Plasmodium yoelii/fisiologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/parasitologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/parasitologia
7.
Front Immunol ; 7: 304, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559335

RESUMO

Over the last 15 years, the inducible T cell co-stimulator (ICOS) has been implicated in various immune outcomes, including the induction and regulation of Th1, Th2, and Th17 immunity. In addition to its role in directing effector T cell differentiation, ICOS has also been consistently linked with the induction of thymus-dependent (TD) antibody (Ab) responses and the germinal center (GC) reaction. ICOS co-stimulation, therefore, appears to play a complex role in dictating the course of adaptive immunity. In this article, we summarize the initial characterization of ICOS and its relationship with the related co-stimulatory molecule CD28. We then address the contribution of ICOS in directing an effector T cell response, and ultimately disease outcome, against various bacterial, viral, and parasitic infections. Next, we assess ICOS in the context of TD Ab responses, connecting ICOS signaling to follicular helper T cell differentiation and its role in the GC reaction. Finally, we address the link between ICOS and human autoimmune disorders and evaluate potential therapies aiming to mitigate disease progression by modulating ICOS signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA