Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 59(5): 1049-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852333

RESUMO

AIMS/HYPOTHESIS: The crosstalk between skeletal muscle (SkM) and beta cells plays a role in diabetes aetiology. In this study, we have investigated whether SkM-released exosome-like vesicles (ELVs) can be taken up by pancreatic beta cells and can deliver functional cargoes. METHODS: Mice were fed for 16 weeks with standard chow diet (SCD) or with standard diet enriched with 20% palmitate (HPD) and ELVs were purified from quadriceps muscle. Fluorescent ELVs from HPD or SCD quadriceps were injected i.v. or intramuscularly (i.m.) into mice to determine their biodistributions. Micro (mi)RNA quantification in ELVs was determined using quantitative real-time RT-PCR (qRT-PCR)-based TaqMan low-density arrays. Microarray analyses were performed to determine whether standard diet ELVs (SD-ELVs) and high palmitate diet ELVs (HPD-ELVs) induced specific transcriptional signatures in MIN6B1 cells. RESULTS: In vivo, muscle ELVs were taken up by pancreas, 24 h post-injection. In vitro, both SD-ELVs and HPD-ELVs transferred proteins and miRNAs to MIN6B1 cells and modulated gene expressions whereas only HPD-ELVs induced proliferation of MIN6B1 cells and isolated islets. Bioinformatic analyses suggested that transferred HPD-ELV miRNAs may participate in these effects. To validate this, we demonstrated that miR-16, which is overexpressed in HPD-ELVs, was transferred to MIN6B1 cells and regulated Ptch1, involved in pancreas development. In vivo, islets from HPD mice showed increased size and altered expression of genes involved in development, including Ptch1, suggesting that the effect of palm oil on islet size in vivo was reproduced in vitro by treating beta cells with HPD-ELVs. CONCLUSIONS/INTERPRETATION: Our data suggest that muscle ELVs might have an endocrine effect and could participate in adaptations in beta cell mass during insulin resistance.


Assuntos
Exossomos/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Masculino , Camundongos , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo
2.
J Mol Cell Cardiol ; 82: 186-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25791168

RESUMO

Hypercholesterolemia is a medical condition often characterized by high levels of low-density lipoprotein cholesterol (LDL-C) in the blood. Despite the available therapies, not all patients show sufficient responses, especially those with very high levels of LDL-C or those with familial hypercholesterolemia. Regulation of plasma cholesterol levels is very complex and several proteins are involved (both receptors and enzymes). From these, the proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising pharmacologic target. The objective of this work is to develop a new approach to inactivate PCSK9 by splice-switching oligonucleotides (SSOs), converting the normal splice form to a natural, less abundant and inactive, splice variant. For this purpose, a new RNA therapeutic approach for hypercholesterolemia based on SSOs was developed for modulation of the splice pattern of human PCSK9 pre-mRNA. Our results show an increase of the selected splice form at both the mRNA and protein level when compared to non-treated Huh7 and HepG2 cell lines, with concomitant increase of the protein level of the low-density lipoprotein receptor (LDLR) demonstrating the specificity and efficiency of the system. In vivo, full conversion to the splice form was achieved in a reporter system when mice were treated with the specific oligonucleotide, thus further indicating the therapeutic potential of the approach. In conclusion, PCSK9 activity can be modulated by splice-switching through an RNA therapeutic approach. The tuning of the natural active to non-active isoforms represents a physiological way of regulating the cholesterol metabolism, by controlling the amount of LDL receptor available and the rate of LDL-cholesterol clearance.


Assuntos
Inativação Gênica , Oligonucleotídeos/genética , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , RNA/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Expressão Gênica , Genes Reporter , Hepatócitos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Camundongos , Pró-Proteína Convertase 9 , Transporte Proteico , Splicing de RNA , Receptores de LDL/metabolismo , Transfecção
3.
Respiration ; 90(6): 481-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26613253

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a devastating disorder. Despite enormous efforts in clinical research, effective treatment options are lacking, and mortality rates remain unacceptably high. OBJECTIVES: A male patient with severe ARDS showed no clinical improvement with conventional therapies. Hence, an emergent experimental intervention was performed. METHODS: We performed intratracheal administration of autologous peripheral blood-derived mononuclear cells (PBMCs) and erythropoietin (EPO). RESULTS: We found that after 2 days of initial PBMC/EPO application, lung function improved and extracorporeal membrane oxygenation (ECMO) support was reduced. Bronchoscopy and serum inflammatory markers revealed reduced inflammation. Additionally, serum concentration of miR-449a, b, c and miR-34a, a transient upregulation of E-cadherin and associated chromatin marks in PBMCs indicated airway epithelial differentiation. Extracellular vesicles from PBMCs demonstrated anti-inflammatory capacity in a TNF-α-mediated nuclear factor-x03BA;B in vitro assay. Despite improving respiratory function, the patient died of multisystem organ failure on day 38 of ECMO treatment. CONCLUSIONS: This case report provides initial encouraging evidence to use locally instilled PBMC/EPO for treatment of severe refractory ARDS. The observed clinical improvement may partially be due to the anti-inflammatory effects of PBMC/EPO to promote tissue regeneration. Further studies are needed for more in-depth understanding of the underlying mechanisms of in vivo regeneration.


Assuntos
Leucócitos Mononucleares/transplante , Síndrome do Desconforto Respiratório/terapia , Caderinas/sangue , Citocinas/sangue , Regulação para Baixo , Eritropoetina/administração & dosagem , Oxigenação por Membrana Extracorpórea , Evolução Fatal , Humanos , Masculino , MicroRNAs/sangue , Insuficiência de Múltiplos Órgãos/etiologia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/sangue , Transplante Autólogo , Regulação para Cima , Adulto Jovem
4.
Nanomedicine ; 11(4): 879-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25659648

RESUMO

Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs. FROM THE CLINICAL EDITOR: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.


Assuntos
Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/ultraestrutura , Cromatografia em Gel , Células HEK293 , Humanos , Ultrafiltração
5.
Diabetologia ; 57(10): 2155-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073444

RESUMO

AIMS/HYPOTHESIS: Exosomes released from cells can transfer both functional proteins and RNAs between cells. In this study we tested the hypothesis that muscle cells might transmit specific signals during lipid-induced insulin resistance through the exosomal route. METHODS: Exosomes were collected from quadriceps muscles of C57Bl/6 mice fed for 16 weeks with either a standard chow diet (SD) or an SD enriched with 20% palm oil (HP) and from C2C12 cells exposed to 0.5 mmol/l palmitate (EXO-Post Palm), oleate (EXO-Post Oleate) or BSA (EXO-Post BSA). RESULTS: HP-fed mice were obese and insulin resistant and had altered insulin-induced Akt phosphorylation in skeletal muscle (SkM). They also had reduced expression of Myod1 and Myog and increased levels of Ccnd1 mRNA, indicating that palm oil had a deep impact on SkM homeostasis in addition to insulin resistance. HP-fed mouse SkM secreted more exosomes than SD-fed mouse SkM. This was reproduced in-vitro using C2C12 cells pre-treated with palmitate, the most abundant saturated fatty acid of palm oil. Exosomes from HP-fed mice, EXO-Post Palm and EXO-Post Oleate induced myoblast proliferation and modified the expressions of genes involved in the cell cycle and muscle differentiation but did not alter insulin-induced Akt phosphorylation. Lipidomic analyses showed that exosomes from palmitate-treated cells were enriched in palmitate, indicating that exosomes likely transfer the deleterious effect of palm oil between muscle cells by transferring lipids. Muscle exosomes were incorporated into various tissues in vivo, including the pancreas and liver, suggesting that SkM could transfer specific signals through the exosomal route to key metabolic tissues. CONCLUSIONS/INTERPRETATION: Exosomes act as 'paracrine-like' signals and modify muscle homeostasis during high-fat diets.


Assuntos
Exossomos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Palmitatos/farmacologia , Animais , Western Blotting , Linhagem Celular , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
6.
Int Immunopharmacol ; 129: 111584, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364741

RESUMO

The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.


Assuntos
Células Supressoras Mieloides , Animais , Camundongos , Dinoprostona/metabolismo , Osteopontina/metabolismo , Pioglitazona , Evasão Tumoral
7.
J Extracell Vesicles ; 13(7): e12471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38944672

RESUMO

Haematopoiesis dysregulation with the presence of immature myeloid and erythroid immunosuppressive cells are key characteristics of the immune escape phase of tumour development. Here, the role of in vitro generated B16F10 tumour cell-derived extracellular vesicles (tEVs) as indirect cellular communicators, participating in tumour-induced dysregulation of haematopoiesis, was explored. The isolated tEVs displayed features of small EVs with a size range of 100-200 nm, expressed the common EV markers CD63, CD9, and Alix, and had a spherical shape with a lipid bilayer membrane. Proteomic profiling revealed significant levels of angiogenic factors, particularly vascular endothelial growth factor (VEGF), osteopontin, and tissue factor, associated with the tEVs. Systemic administration of these tEVs in syngeneic mice induced splenomegaly and disrupted haematopoiesis, leading to extramedullary haematopoiesis, expansion of splenic immature erythroid progenitors, reduced bone marrow cellularity, medullary expansion of granulocytic myeloid suppressor cells, and the development of anaemia. These effects closely mirrored those observed in tumour-bearing mice and were not seen after heat inactivating the tEVs. In vitro studies demonstrated that tEVs independently induced the expansion of bone marrow granulocytic myeloid suppressor cells and B cells while reducing the frequency of cells in the erythropoietic lineage. These effects of tEVs were significantly abrogated by the blockade of VEGF or heat inactivation. Our findings underscore the important role of tEVs in dysregulating haematopoiesis during the immune escape phase of cancer immunoediting, suggesting their potential as targets for addressing immune evasion and reinstating normal hematopoietic processes.


Assuntos
Vesículas Extracelulares , Hematopoese , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Camundongos , Melanoma Experimental/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral
8.
Nat Biomed Eng ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769158

RESUMO

Extracellular vesicles (EVs) function as natural delivery vectors and mediators of biological signals across tissues. Here, by leveraging these functionalities, we show that EVs decorated with an antibody-binding moiety specific for the fragment crystallizable (Fc) domain can be used as a modular delivery system for targeted cancer therapy. The Fc-EVs can be decorated with different types of immunoglobulin G antibody and thus be targeted to virtually any tissue of interest. Following optimization of the engineered EVs by screening Fc-binding and EV-sorting moieties, we show the targeting of EVs to cancer cells displaying the human epidermal receptor 2 or the programmed-death ligand 1, as well as lower tumour burden and extended survival of mice with subcutaneous melanoma tumours when systemically injected with EVs displaying an antibody for the programmed-death ligand 1 and loaded with the chemotherapeutic doxorubicin. EVs with Fc-binding domains may be adapted to display other Fc-fused proteins, bispecific antibodies and antibody-drug conjugates.

9.
Nat Commun ; 14(1): 4734, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550290

RESUMO

Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.


Assuntos
Vesículas Extracelulares , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistemas de Liberação de Medicamentos , Transporte Proteico , Comunicação Celular
10.
J Extracell Vesicles ; 11(7): e12248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879268

RESUMO

Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.


Assuntos
Vesículas Extracelulares , Neoplasias , Albuminas/análise , Animais , Tempo de Circulação Sanguínea , Modelos Animais de Doenças , Vesículas Extracelulares/química , Humanos , Linfonodos , Camundongos , Neoplasias/metabolismo , Tetraspaninas/análise
11.
J Extracell Vesicles ; 11(6): e12238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716060

RESUMO

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Congelamento , Humanos , Ácidos Nucleicos/metabolismo , Trealose/metabolismo
12.
Pharmaceutics ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35056933

RESUMO

The clinical use of chemotherapeutics is limited by several factors, including low cellular uptake, short circulation time, and severe adverse effects. Extracellular vesicles (EVs) have been suggested as a drug delivery platform with the potential to overcome these limitations. EVs are cell-derived, lipid bilayer nanoparticles, important for intercellular communication. They can transport bioactive cargo throughout the body, surmount biological barriers, and target a variety of tissues. Several small molecule drugs have been successfully incorporated into the lumen of EVs, permitting efficient transport to tumour tissue, increasing therapeutic potency, and reducing adverse effects. However, the cargo loading is often inadequate and refined methods are a prerequisite for successful utilisation of the platform. By systematically evaluating the effect of altered loading parameters for electroporation, such as total number of EVs, drug to EV ratio, buffers, pulse capacitance, and field strength, we were able to distinguish tendencies and correlations. This allowed us to design an optimised electroporation protocol for loading EVs with the chemotherapeutic drug doxorubicin. The loading technique demonstrated improved cargo loading and EV recovery, as well as drug potency, with a 190-fold increased response compared to naked doxorubicin.

13.
Biomedicines ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440250

RESUMO

Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties.

14.
Biomaterials ; 266: 120435, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049461

RESUMO

The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.


Assuntos
Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animais , Interleucina-6 , Camundongos , Fibras Musculares Esqueléticas , Transdução de Sinais
15.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34616047

RESUMO

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Animais , Citocinas , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
16.
Mol Ther Methods Clin Dev ; 18: 880-892, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953937

RESUMO

We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1ß), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

17.
J Extracell Vesicles ; 9(1): 1800222, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32944187

RESUMO

Extracellular vesicles (EVs) are naturally occurring nano-sized carriers that are secreted by cells and facilitate cell-to-cell communication by their unique ability to transfer biologically active cargo. Despite the pronounced increase in our understanding of EVs over the last decade, from disease pathophysiology to therapeutic drug delivery, improved molecular tools to track their therapeutic delivery are still needed. Unfortunately, the present catalogue of tools utilised for EV labelling lacks sensitivity or are not sufficiently specific. Here, we have explored the bioluminescent labelling of EVs using different luciferase enzymes tethered to CD63 to achieve a highly sensitive system for in vitro and in vivo tracking of EVs. Using tetraspanin fusions to either NanoLuc or ThermoLuc permits performing highly sensitive in vivo quantification of EVs or real-time imaging, respectively, at low cost and in a semi-high throughput manner. We find that the in vivo distribution pattern of EVs is determined by the route of injection, but that different EV subpopulations display differences in biodistribution patterns. By applying this technology for real-time non-invasive in vivo imaging of EVs, we show that their distribution to different internal organs occurs just minutes after administration.

18.
Autoimmun Rev ; 18(6): 615-620, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30959218

RESUMO

BACKGROUND: Febrile neutropenia is generally recognised as a complication of myelosuppressive chemotherapy. Recombinant human granulocyte colony stimulating factor (G-CSF) is commonly used as a primary or secondary prophylaxis to reduce the degree and duration of neutropenia in patients at risk of developing chemotherapy-induced neutropenic fever and infectious complications. G-CSF is known to decrease mortality and increase the possibility of maintaining adequate chemotherapy dose intensity and density, which is essential in curable malignancies. Common side effects are generally mild. However, potentially fatal adverse events have also been reported. CASE PRESENTATION: Herein, we summarise previously reported and report two new independent cases of G-CSF-induced aortitis, both in patients treated with chemotherapy for breast cancer. The two cases, identified only a few months apart, share several common characteristics including type of cancer, gender, age, chemotherapy, G-CSF treatment regimen, and time span from G-CSF initiation to aortitis manifestation. The two cases were both diagnosed by CT scan and successfully treated with corticosteroids along with discontinuation of G-CSF. CONCLUSION: This case report highlights that although aortitis is a rare adverse event of G-CSF treatment, it should be considered in cases of unexplained fever and/or clinical and laboratory findings that do not respond to antibiotics.


Assuntos
Aortite/induzido quimicamente , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Idoso , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Feminino , Febre/induzido quimicamente , Febre/prevenção & controle , Humanos , Pessoa de Meia-Idade , Neutropenia/induzido quimicamente , Neutropenia/prevenção & controle
19.
Sci Transl Med ; 11(492)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092696

RESUMO

Extracellular vesicles (EVs) are nanometer-sized, lipid membrane-enclosed vesicles secreted by most, if not all, cells and contain lipids, proteins, and various nucleic acid species of the source cell. EVs act as important mediators of intercellular communication that influence both physiological and pathological conditions. Given their ability to transfer bioactive components and surmount biological barriers, EVs are increasingly being explored as potential therapeutic agents. EVs can potentiate tissue regeneration, participate in immune modulation, and function as potential alternatives to stem cell therapy, and bioengineered EVs can act as delivery vehicles for therapeutic agents. Here, we cover recent approaches and advances of EV-based therapies.


Assuntos
Vesículas Extracelulares/metabolismo , Animais , Bioengenharia , Doença , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia
20.
Diabetes ; 68(3): 515-526, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552111

RESUMO

miRNAs are noncoding RNAs representing an important class of gene expression modulators. Extracellular circulating miRNAs are both candidate biomarkers for disease pathogenesis and mediators of cell-to-cell communication. We examined the miRNA expression profile of total serum and serum-derived exosome-enriched extracellular vesicles in people with normal glucose tolerance or type 2 diabetes. In contrast to total serum miRNA, which did not reveal any differences in miRNA expression, we identified differentially abundant miRNAs in patients with type 2 diabetes using miRNA expression profiles of exosome RNA (exoRNA). To validate the role of these differentially abundant miRNAs on glucose metabolism, we transfected miR-20b-5p, a highly abundant exoRNA in patients with type 2 diabetes, into primary human skeletal muscle cells. miR-20b-5p overexpression increased basal glycogen synthesis in human skeletal muscle cells. We identified AKTIP and STAT3 as miR-20b-5p targets. miR-20b-5p overexpression reduced AKTIP abundance and insulin-stimulated glycogen accumulation. In conclusion, exosome-derived extracellular miR-20b-5p is a circulating biomarker associated with type 2 diabetes that plays an intracellular role in modulating insulin-stimulated glucose metabolism via AKT signaling.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulina/sangue , Insulina/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Fator de Transcrição STAT3/sangue , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA