RESUMO
Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.
Assuntos
ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , ADP Ribose Transferases/genética , Animais , Proteínas de Bactérias/genética , Sítios de Ligação , Fenômenos Biofísicos , Chlorocebus aethiops , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Domínios Proteicos , Células VeroRESUMO
Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.
Assuntos
Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Substituição de Aminoácidos , Sítios de Ligação , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
MCL-1 is a member of the BCL-2 family of proteins that regulates the mitochondrial pathway of apoptosis. Overexpression of MCL-1 is associated with the development and progression of a range of human cancers, and is also responsible for the onset of resistance to conventional chemotherapies. Although several MCL-1 inhibitors have now advanced to clinical trials, recent suspensions and terminations reveal the urgency with which new inhibitor chemotypes must be discovered. Building on our previous studies of a chiral, isomeric lead, we report the discovery of a new chemotype to inhibit MCL-1: 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acid. The nature of the sulfonyl moiety contributed significantly to the resulting inhibitory ability. For example, transforming a phenylsulfonyl group into a 4-chloro-3,5-dimethylphenoxy)phenyl)sulfonyl moiety elicited more than a 73-fold enhancement in inhibiton of MCL-1, possibly through targeting the p2 pocket in the BH3-binding groove, and so it is anticipated that further structure-activity studies here will lead to continued improvements in binding. It should be underscored that this class of MCL-1 inhibitors is readily accessible in four simple steps, is achiral and offers many avenues for optimization, all factors that are welcomed in the search for safe and effective inhibitors of this driver of cancer cell survival.
Assuntos
Antineoplásicos , Ácidos Carboxílicos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Quinolinas , Humanos , Antineoplásicos/farmacologia , Apoptose , Ácidos Carboxílicos/farmacologia , Linhagem Celular Tumoral , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias , Quinolinas/farmacologiaRESUMO
Cisplatin and other metal-based drugs often display side effects and tumor resistance after prolonged use. Because rhenium-based anticancer complexes are often less toxic, a novel series of organorhenium complexes were synthesized of the types: XRe(CO)3Z (X = α-diimines and Z = p-toluenesulfonate, 1-naphthalenesulfonate, 2-naphthalenesulfonate, picolinate, nicotinate, aspirinate, naproxenate, flufenamate, ibuprofenate, mefenamate, tolfenamate, N-acetyl-tryptophanate), and their biological properties were examined. Specifically, in hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells, the p-toluenesulfonato, 1-naphthalenesulfonato, 2-naphthalenesulfonato, picolinato, nicotinato, acetylsalicylato, flufenamato, ibuprofenato, mefenamato, and N-acetyl-tryptophanato complexes were found to be far more potent than conventional drug cisplatin. DNA-binding studies were performed in each case via UV-Vis titrations, cyclic voltammetry, gel electrophoresis, and viscosity, which suggest DNA partial intercalation interaction, and the structure-activity relationship studies suggest that the anticancer activities increase with the increasing lipophilicities of the compounds, roughly consistent with their DNA-binding activities.
Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Organometálicos , Rênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Humanos , Células MCF-7 , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rênio/química , Rênio/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Inspired by a rhodanine-based dual inhibitor of Bcl-xL and Mcl-1, a focused library of analogues was prepared wherein the rhodanine core was replaced with a less promiscuous thiazolidine-2,4-dione scaffold. Compounds were initially evaluated for their abilities to inhibit Mcl-1. The most potent compound 12b inhibited Mcl-1 with a Ki of 155â¯nM. Further investigation revealed comparable inhibition of Bcl-xL (Kiâ¯=â¯90â¯nM), indicating that the dual inhibitory profile of the initial rhodanine lead had been retained upon switching the heterocycle core.
Assuntos
Descoberta de Drogas , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/químicaRESUMO
The tumorigenic activity of upregulated Mcl-1 is manifested by binding the BH3 α-helical death domains of opposing Bcl-2 family members, neutralizing them and preventing apoptosis. Accordingly, the development of Mcl-1 inhibitors largely focuses on synthetic BH3 mimicry. The condensation of α-pyridinium methyl ketone salts and α,ß-unsaturated carbonyl compounds in the presence of a source of ammonia, or the Kröhnke pyridine synthesis, is a simple approach to afford highly functionalized pyridines. We adapted this chemistry to rapidly generate low-micromolar inhibitors of Mcl-1 wherein the 2,4,6-substituents were predicted to mimic the i, iâ¯+â¯2 and iâ¯+â¯7 side chains of the BH3 α-helix.
Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Piridinas/química , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Piridinas/metabolismo , Relação Estrutura-AtividadeRESUMO
Biochemical and structural studies demonstrate that S100A1 is involved in a Ca2+-dependent interaction with the type 2α and type 2ß regulatory subunits of protein kinase A (PKA) (RIIα and RIIß) to activate holo-PKA. The interaction was specific for S100A1 because other calcium-binding proteins (i.e., S100B and calmodulin) had no effect. Likewise, a role for S100A1 in PKA-dependent signaling was established because the PKA-dependent subcellular redistribution of HDAC4 was abolished in cells derived from S100A1 knockout mice. Thus, the Ca2+-dependent interaction between S100A1 and the type 2 regulatory subunits represents a novel mechanism that provides a link between Ca2+ and PKA signaling, which is important for the regulation of gene expression in skeletal muscle via HDAC4 cytosolic-nuclear trafficking.
Assuntos
Sinalização do Cálcio , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Histona Desacetilases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas S100/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Ativação Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/enzimologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas S100/genéticaRESUMO
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNA(S100B) knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca(2+)-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.
Assuntos
Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Citosol/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Microscopia Confocal , Complexos Multiproteicos/metabolismo , Mutação , Fosforilação , Ligação Proteica , Interferência de RNA , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Treonina/metabolismoRESUMO
Elevated levels of the tumor marker S100B are observed in malignant melanoma, and this EF-hand-containing protein was shown to directly bind wild-type (wt) p53 in a Ca(2+)-dependent manner, dissociate the p53 tetramer, and inhibit its tumor suppression functions. Likewise, inhibiting S100B with small interfering RNA (siRNA(S100B)) is sufficient to restore wild-type p53 levels and its downstream gene products and induce the arrest of cell growth and UV-dependent apoptosis in malignant melanoma. Therefore, it is a goal to develop S100B inhibitors (SBiXs) that inhibit the S100B-p53 complex and restore active p53 in this deadly cancer. Using a structure-activity relationship by nuclear magnetic resonance approach (SAR by NMR), three persistent binding pockets are found on S100B, termed sites 1-3. While inhibitors that simultaneously bind sites 2 and 3 are in place, no molecules that simultaneously bind all three persistent sites are available. For this purpose, Cys84 was used in this study as a potential means to bridge sites 1 and 2 because it is located in a small crevice between these two deeper pockets on the protein. Using a fluorescence polarization competition assay, several Cys84-modified S100B complexes were identified and examined further. For five such SBiX-S100B complexes, crystallographic structures confirmed their covalent binding to Cys84 near site 2 and thus present straightforward chemical biology strategies for bridging sites 1 and 3. Importantly, one such compound, SC1982, showed an S100B-dependent death response in assays with WM115 malignant melanoma cells, so it will be particularly useful for the design of SBiX molecules with improved affinity and specificity.
Assuntos
Cálcio/química , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/química , Animais , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Benzoquinonas/química , Benzoquinonas/farmacologia , Sítios de Ligação , Cálcio/metabolismo , Cátions Bivalentes , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Dissulfiram/química , Dissulfiram/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Humanos , Melanoma , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismoRESUMO
Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.
Assuntos
Proteína de Capeamento de Actina CapZ/química , Proteína de Capeamento de Actina CapZ/farmacologia , Melanoma/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia de Contraste de Fase , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Indução de Remissão , Transdução de Sinais/efeitos dos fármacos , Temperatura , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-2/Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. We designed the BH3 α-helix mimetic JY-1-106 to engage the hydrophobic BH3-binding grooves on the surfaces of both Bcl-xL and Mcl-1. METHODS: JY-1-106-protein complexes were studied using molecular dynamics (MD) simulations and the SILCS methodology. We have evaluated the in vitro effects of JY-1-106 by using a fluorescence polarization (FP) assay, an XTT assay, apoptosis assays, and immunoprecipitation and western-blot assays. A preclinical human cancer xenograft model was used to test the efficacy of JY-1-106 in vivo. RESULTS: MD and SILCS simulations of the JY-1-106-protein complexes indicated the importance of the aliphatic side chains of JY-1-106 to binding and successfully predicted the improved affinity of the ligand for Bcl-xL over Mcl-1. Ligand binding affinities were measured via an FP assay using a fluorescently labeled Bak-BH3 peptide in vitro. Apoptosis induction via JY-1-106 was evidenced by TUNEL assay and PARP cleavage as well as by Bax-Bax dimerization. Release of multi-domain Bak from its inhibitory binding to Bcl-2/Bcl-xL and Mcl-1 using JY-1-106 was detected via immunoprecipitation (IP) western blotting.At the cellular level, we compared the growth proliferation IC50s of JY-1-106 and ABT-737 in multiple cancer cell lines with various Bcl-xL and Mcl-1 expression levels. JY-1-106 effectively induced cell death regardless of the Mcl-1 expression level in ABT-737 resistant solid tumor cells, whilst toxicity toward normal human endothelial cells was limited. Furthermore, synergistic effects were observed in A549 cells using a combination of JY-1-106 and multiple chemotherapeutic agents. We also observed that JY-1-106 was a very effective agent in inducing apoptosis in metabolically stressed tumors. Finally, JY-1-106 was evaluated in a tumor-bearing nude mouse model, and was found to effectively repress tumor growth. Strong TUNEL signals in the tumor cells demonstrated the effectiveness of JY-1-106 in this animal model. No significant side effects were observed in mouse organs after multiple injections. CONCLUSIONS: Taken together, these observations demonstrate that JY-1-106 is an effective pan-Bcl-2 inhibitor with very promising clinical potential.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Neoplasias do Colo/patologia , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo , para-Aminobenzoatos/farmacologia , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Mimetismo Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: S100A4, a member of the S100 family of Ca2+-binding proteins, modulates the motility of both non-transformed and cancer cells by regulating the localization and stability of cellular protrusions. Biochemical studies have demonstrated that S100A4 binds to the C-terminal end of the myosin-IIA heavy chain coiled-coil and disassembles myosin-IIA filaments; however, the mechanism by which S100A4 mediates myosin-IIA depolymerization is not well understood. RESULTS: We determined the X-ray crystal structure of the S100A4Δ8C/MIIA(1908-1923) peptide complex, which showed an asymmetric binding mode for the myosin-IIA peptide across the S100A4 dimer interface. This asymmetric binding mode was confirmed in NMR studies using a spin-labeled myosin-IIA peptide. In addition, our NMR data indicate that S100A4Δ8C binds the MIIA(1908-1923) peptide in an orientation very similar to that observed for wild-type S100A4. Studies of complex formation using a longer, dimeric myosin-IIA construct demonstrated that S100A4 binding dissociates the two myosin-IIA polypeptide chains to form a complex composed of one S100A4 dimer and a single myosin-IIA polypeptide chain. This interaction is mediated, in part, by the instability of the region of the myosin-IIA coiled-coil encompassing the S100A4 binding site. CONCLUSION: The structure of the S100A4/MIIA(1908-1923) peptide complex has revealed the overall architecture of this assembly and the detailed atomic interactions that mediate S100A4 binding to the myosin-IIA heavy chain. These structural studies support the idea that residues 1908-1923 of the myosin-IIA chain heavy represent a core sequence for the S100A4/myosin-IIA complex. In addition, biophysical studies suggest that structural fluctuations within the myosin-IIA coiled-coil may facilitate S100A4 docking onto a single myosin-IIA polypeptide chain.
Assuntos
Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Miosinas/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100RESUMO
The anti-apoptotic protein MCL-1, which is overexpressed in multiple cancers, is presently a focus for the development of targeted drugs in oncology. We previously discovered inhibitors of MCL-1 based on 1-sulfonylated 1,2,3,4-tetrahydroquinoline-6-carboxylic acids ("1,6-THQs"). However, with the nitrogen atom constrained in the bicyclic ring, we were unable to modify the alkyl portion of the tertiary sulfonamide functionality. Moreover, the introduction of additional functional groups onto the benzene ring portion of the THQ bicycle would not be trivial. Therefore, we elected to deconstruct the piperidine-type ring of the 6-carboxy-THQ lead to create a new 4-aminobenzoic acid scaffold. Given its simplicity, this permitted us to introduce diversity at the sulfonamide nitrogen, as well as vary the positions and substituents of the benzene ring. One of our most potent MCL-1 inhibitors, 6e-OH, exhibited a K i of 0.778 µM. Heteronuclear single quantum coherence experiments suggested 6e-OH bound in the canonical BH3-binding groove, with significant perturbations of R263, which forms a salt bridge with MCL-1's pro-apoptotic binding partners, as well as residues in the p2 pocket. Selectivity studies indicated that our compounds are dual inhibitors of MCL-1 and BCL-xL, with 17cd the most potent dual inhibitor: K i = 0.629 µM (MCL-1), 1.67 µM (BCL-xL). Whilst selective inhibitors may be more desirable in certain instances, polypharmacological agents whose additional target(s) address other pathways associated with the disease state, or serve to counter resistance mechanisms to the primary target, may prove particularly effective therapeutics. Since selective MCL-1 inhibition may be thwarted by overexpression of sister anti-apoptotic proteins, including BCL-xL and BCL-2, we believe our work lays a solid foundation towards the development of multi-targeting anti-cancer drugs.
RESUMO
By conducting a structure-activity relationship study of the backbone of a series of oligoamide-foldamer-based α-helix mimetics of the Bak BH3 helix, we have identified especially potent inhibitors of Bcl-x(L). The most potent compound has a K(i) value of 94 nM in vitro, and single-digit micromolar IC(50) values against the proliferation of several Bcl-x(L)-overexpressing cancer cell lines.
Assuntos
Antineoplásicos/síntese química , Benzamidas/síntese química , Materiais Biomiméticos/síntese química , Ácidos Picolínicos/síntese química , Proteína bcl-X/antagonistas & inibidores , Amidas/síntese química , Amidas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Sítios de Ligação , Materiais Biomiméticos/farmacologia , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fragmentos de Peptídeos/química , Ácidos Picolínicos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína bcl-X/químicaRESUMO
Overexpression of the anti-apoptotic BCL-2 proteins is associated with the development and progression of a range of cancers. Venetoclax, an FDA-approved BCL-2 inhibitor, is fast becoming the standard-of-care for acute myeloid leukemia and chronic lymphocytic leukemia. However, the median survival offered by venetoclax is only 18 months (as part of a combination therapy regimen), and one of the primary culprits for this is the concomitant upregulation of sister anti-apoptotic proteins, in particular MCL-1 (and BCL-xL), which provides an escape route that manifests as venetoclax resistance. Since inhibition of BCL-xL leads to thrombocytopenia, we believe that a dual MCL-1/BCL-2 inhibitor may provide an enhanced therapeutic effect relative to a selective BCL-2 inhibitor. Beginning with a carboxylic acid-containing literature compound that is a potent inhibitor of MCL-1 and a moderate inhibitor of BCL-2, we herein describe our efforts to develop dual inhibitors of MCL-1 and BCL-2 by scaffold hopping from an indole core to an indazole framework. Subsequently, further elaboration of our novel N2-substituted, indazole-3-carboxylic acid lead into a family of indazole-3-acylsulfonamides resulted in improved inhibition of both MCL-1 and BCL-2, possibly through occupation of the p4 pocket, with minimal or no inhibition of BCL-xL.
RESUMO
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/fisiologia , Calmodulina/fisiologia , Feminino , Masculino , Camundongos , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Proteínas S100/fisiologia , Retículo Sarcoplasmático/fisiologiaRESUMO
The S100B-p53 protein complex was discovered in C8146A malignant melanoma, but the consequences of this interaction required further study. When S100B expression was inhibited in C8146As by siRNA (siRNA(S100B)), wt p53 mRNA levels were unchanged, but p53 protein, phosphorylated p53, and p53 gene products (i.e. p21 and PIDD) were increased. siRNA(S100B) transfections also restored p53-dependent apoptosis in C8146As as judged by poly(ADP-ribose) polymerase cleavage, DNA ladder formation, caspase 3 and 8 activation, and aggregation of the Fas death receptor (+UV); whereas, siRNA(S100B) had no effect in SK-MEL-28 cells containing elevated S100B and inactive p53 (p53R145L mutant). siRNA(S100B)-mediated apoptosis was independent of the mitochondria, because no changes were observed in mitochondrial membrane potential, cytochrome c release, caspase 9 activation, or ratios of pro- and anti-apoptotic proteins (BAX, Bcl-2, and Bcl-X(L)). As expected, cells lacking S100B (LOX-IM VI) were not affected by siRNA(S100B), and introduction of S100B reduced their UV-induced apoptosis activity by 7-fold, further demonstrating that S100B inhibits apoptosis activities in p53-containing cells. In other wild-type p53 cells (i.e. C8146A, UACC-2571, and UACC-62), S100B was found to contribute to cell survival after UV treatment, and for C8146As, the decrease in survival after siRNA(S100B) transfection (+UV) could be reversed by the p53 inhibitor, pifithrin-alpha. In summary, reducing S100B expression with siRNA was sufficient to activate p53, its transcriptional activation activities, and p53-dependent apoptosis pathway(s) in melanoma involving the Fas death receptor and perhaps PIDD. Thus, a well known marker for malignant melanoma, S100B, likely contributes to cancer progression by down-regulating the tumor suppressor protein, p53.
Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Apoptose/metabolismo , Melanoma/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Citocromos c/genética , Citocromos c/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Ativação Enzimática/genética , Ativação Enzimática/efeitos da radiação , Humanos , Proteínas Inibidoras de Apoptose/genética , Melanoma/genética , Melanoma/patologia , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/efeitos da radiação , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Fatores de Crescimento Neural/genética , Fosforilação/genética , Fosforilação/efeitos da radiação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta , Receptor fas/genética , Receptor fas/metabolismoRESUMO
S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.
Assuntos
Interleucina-6/genética , Melanoma/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Transcrição STAT3/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/genética , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Calmodulina/química , Calmodulina/genética , Motivos EF Hand , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica , Vitamina A/metabolismo , Proteínas de Peixe-Zebra/genéticaRESUMO
The article 1HN, 13C, and 15N resonance assignments of human calmodulin bound to a peptide derived from the STRA6 vitamin A transporter (CaMBP2), written by Kristen M. Varney, Paul T. Wilder, Raquel Godoy-Ruiz, Filippo Mancia and David J. Weber, was originally published Online First without Open Access. After publication in volume 13, issue 2, page [275-278] the author decided to opt for Open Choice and to make the article an Open Access publication.