Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cell ; 172(3): 618-628.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29307492

RESUMO

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Animais , Antibacterianos/química , Escherichia coli , Camundongos
2.
Mol Biol Evol ; 40(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619989

RESUMO

The most highly expressed genes in microbial genomes tend to use a limited set of synonymous codons, often referred to as "preferred codons." The existence of preferred codons is commonly attributed to selection pressures on various aspects of protein translation including accuracy and/or speed. However, gene expression is condition-dependent and even within single-celled organisms transcript and protein abundances can vary depending on a variety of environmental and other factors. Here, we show that growth rate-dependent expression variation is an important constraint that significantly influences the evolution of gene sequences. Using large-scale transcriptomic and proteomic data sets in Escherichia coli and Saccharomyces cerevisiae, we confirm that codon usage biases are strongly associated with gene expression but highlight that this relationship is most pronounced when gene expression measurements are taken during rapid growth conditions. Specifically, genes whose relative expression increases during periods of rapid growth have stronger codon usage biases than comparably expressed genes whose expression decreases during rapid growth conditions. These findings highlight that gene expression measured in any particular condition tells only part of the story regarding the forces shaping the evolution of microbial gene sequences. More generally, our results imply that microbial physiology during rapid growth is critical for explaining long-term translational constraints.


Assuntos
Uso do Códon , Magnoliopsida , Proteômica , Escherichia coli/genética , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Viés
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845024

RESUMO

CRISPR-associated Tn7 transposons (CASTs) co-opt cas genes for RNA-guided transposition. CASTs are exceedingly rare in genomic databases; recent surveys have reported Tn7-like transposons that co-opt Type I-F, I-B, and V-K CRISPR effectors. Here, we expand the diversity of reported CAST systems via a bioinformatic search of metagenomic databases. We discover architectures for all known CASTs, including arrangements of the Cascade effectors, target homing modalities, and minimal V-K systems. We also describe families of CASTs that have co-opted the Type I-C and Type IV CRISPR-Cas systems. Our search for non-Tn7 CASTs identifies putative candidates that include a nuclease dead Cas12. These systems shed light on how CRISPR systems have coevolved with transposases and expand the programmable gene-editing toolkit.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Elementos de DNA Transponíveis/fisiologia , Endonucleases/genética , Edição de Genes , Metagenoma , Metagenômica/métodos , RNA Guia de Cinetoplastídeos/genética , Transposases/genética
4.
PLoS Biol ; 18(5): e3000627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32421706

RESUMO

Despite over a billion years of evolutionary divergence, several thousand human genes possess clearly identifiable orthologs in yeast, and many have undergone lineage-specific duplications in one or both lineages. These duplicated genes may have been free to diverge in function since their expansion, and it is unclear how or at what rate ancestral functions are retained or partitioned among co-orthologs between species and within gene families. Thus, in order to investigate how ancestral functions are retained or lost post-duplication, we systematically replaced hundreds of essential yeast genes with their human orthologs from gene families that have undergone lineage-specific duplications, including those with single duplications (1 yeast gene to 2 human genes, 1:2) or higher-order expansions (1:>2) in the human lineage. We observe a variable pattern of replaceability across different ortholog classes, with an obvious trend toward differential replaceability inside gene families, and rarely observe replaceability by all members of a family. We quantify the ability of various properties of the orthologs to predict replaceability, showing that in the case of 1:2 orthologs, replaceability is predicted largely by the divergence and tissue-specific expression of the human co-orthologs, i.e., the human proteins that are less diverged from their yeast counterpart and more ubiquitously expressed across human tissues more often replace their single yeast ortholog. These trends were consistent with in silico simulations demonstrating that when only one ortholog can replace its corresponding yeast equivalent, it tends to be the least diverged of the pair. Replaceability of yeast genes having more than 2 human co-orthologs was marked by retention of orthologous interactions in functional or protein networks as well as by more ancestral subcellular localization. Overall, we performed >400 human gene replaceability assays, revealing 50 new human-yeast complementation pairs, thus opening up avenues to further functionally characterize these human genes in a simplified organismal context.


Assuntos
Evolução Molecular , Genes Duplicados , Genes Fúngicos , Família Multigênica , Saccharomycetales/genética , Expressão Gênica , Teste de Complementação Genética , Humanos , Homologia de Sequência do Ácido Nucleico
5.
Cell ; 134(2): 341-52, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662548

RESUMO

Strikingly consistent correlations between rates of coding-sequence evolution and gene expression levels are apparent across taxa, but the biological causes behind the selective pressures on coding-sequence evolution remain controversial. Here, we demonstrate conserved patterns of simple covariation between sequence evolution, codon usage, and mRNA level in E. coli, yeast, worm, fly, mouse, and human that suggest that all observed trends stem largely from a unified underlying selective pressure. In metazoans, these trends are strongest in tissues composed of neurons, whose structure and lifetime confer extreme sensitivity to protein misfolding. We propose, and demonstrate using a molecular-level evolutionary simulation, that selection against toxicity of misfolded proteins generated by ribosome errors suffices to create all of the observed covariation. The mechanistic model of molecular evolution that emerges yields testable biochemical predictions, calls into question the use of nonsynonymous-to-synonymous substitution ratios (Ka/Ks) to detect functional selection, and suggests how mistranslation may contribute to neurodegenerative disease.


Assuntos
Evolução Molecular , Expressão Gênica , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas/metabolismo , Animais , Caenorhabditis elegans/genética , Simulação por Computador , Drosophila melanogaster/genética , Escherichia coli/genética , Genoma , Humanos , Camundongos , Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Seleção Genética
6.
Appl Environ Microbiol ; 88(23): e0148622, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36394322

RESUMO

Microcins are a class of antimicrobial peptides produced by certain Gram-negative bacterial species to kill or inhibit the growth of competing bacteria. Only 10 unique, experimentally validated class II microcins have been identified, and the majority of these come from Escherichia coli. Although the current representation of microcins is sparse, they exhibit a diverse array of molecular functionalities, uptake mechanisms, and target specificities. This broad diversity from such a small representation suggests that microcins may have untapped potential for bioprospecting peptide antibiotics from genomic data sets. We used a systematic bioinformatics approach to search for verified and novel class II microcins in E. coli and other species within its family, Enterobacteriaceae. Nearly one-quarter of the E. coli genome assemblies contained one or more microcins, where the prevalence of hits to specific microcins varied by isolate phylogroup. E. coli isolates from human extraintestinal and poultry meat sources were enriched for microcins, while those from freshwater were depleted. Putative microcins were found in various abundances across all five distinct phylogenetic lineages of Enterobacteriaceae, with a particularly high prevalence in the "Klebsiella" clade. Representative genome assemblies from species across the Enterobacterales order, as well as a few outgroup species, also contained putative microcin sequences. This study suggests that microcins have a complicated evolutionary history, spanning far beyond our limited knowledge of the currently validated microcins. Efforts to functionally characterize these newly identified microcins have great potential to open a new field of peptide antibiotics and microbiome modulators and elucidate the ways in which bacteria compete with each other. IMPORTANCE Class II microcins are small bacteriocins produced by strains of Gram-negative bacteria in the Enterobacteriaceae. They are generally understood to play a role in interbacterial competition, although direct evidence of this is limited, and they could prove informative in developing new peptide antibiotics. However, few examples of verified class II microcins exist, and novel microcins are difficult to identify due to their sequence diversity, making it complicated to study them as a group. Here, we overcome this limitation by developing a bioinformatics pipeline to detect microcins in silico. Using this pipeline, we demonstrate that both verified and novel class II microcins are widespread within and outside the Enterobacteriaceae, which has not been systematically shown previously. The observed prevalence of class II microcins suggests that they are ecologically important, and the elucidation of novel microcins provides a resource that can be used to expand our knowledge of the structure and function of microcins as antibacterials.


Assuntos
Bacteriocinas , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/química , Enterobacteriaceae , Escherichia coli/genética , Peptídeos/genética , Filogenia
7.
Nat Rev Genet ; 17(2): 109-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26781812

RESUMO

It has long been recognized that certain sites within a protein, such as sites in the protein core or catalytic residues in enzymes, are evolutionarily more conserved than other sites. However, our understanding of rate variation among sites remains surprisingly limited. Recent progress to address this includes the development of a wide array of reliable methods to estimate site-specific substitution rates from sequence alignments. In addition, several molecular traits have been identified that correlate with site-specific mutation rates, and novel mechanistic biophysical models have been proposed to explain the observed correlations. Nonetheless, current models explain, at best, approximately 60% of the observed variance, highlighting the limitations of current methods and models and the need for new research directions.


Assuntos
Evolução Molecular , Proteínas/genética , Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo
9.
J Biol Phys ; 47(4): 435-454, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34751854

RESUMO

One fundamental problem of protein biochemistry is to predict protein structure from amino acid sequence. The inverse problem, predicting either entire sequences or individual mutations that are consistent with a given protein structure, has received much less attention even though it has important applications in both protein engineering and evolutionary biology. Here, we ask whether 3D convolutional neural networks (3D CNNs) can learn the local fitness landscape of protein structure to reliably predict either the wild-type amino acid or the consensus in a multiple sequence alignment from the local structural context surrounding site of interest. We find that the network can predict wild type with good accuracy, and that network confidence is a reliable measure of whether a given prediction is likely going to be correct or not. Predictions of consensus are less accurate and are primarily driven by whether or not the consensus matches the wild type. Our work suggests that high-confidence mis-predictions of the wild type may identify sites that are primed for mutation and likely targets for protein engineering.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Aminoácidos , Proteínas/genética
10.
Mol Biol Evol ; 36(2): 304-314, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30428072

RESUMO

Gene duplication is seen as a major source of structural and functional divergence in genome evolution. Under the conventional models of sub or neofunctionalization, functional changes arise in one of the duplicates after duplication. However, we suggest here that the presence of a duplicated gene can result in functional changes to its interacting partners. We explore this hypothesis by in silico evolution of a heterodimer when one member of the interacting pair is duplicated. We examine how a range of selection pressures and protein structures leads to differential patterns of evolutionary divergence. We find that a surprising number of distinct evolutionary trajectories can be observed even in a simple three member system. Further, we observe that selection to correct dosage imbalance can affect the evolution of the initial function in several unexpected ways. For example, if a duplicate is under selective pressure to avoid binding its original binding partner, this can lead to changes in the binding interface of a nonduplicated interacting partner to exclude the duplicate. Hence, independent of the fate of the duplicate, its presence can impact how the original function operates. Additionally, we introduce a conceptual framework to describe how interacting partners cope with dosage imbalance after duplication. Contextualizing our results within this framework reveals that the evolutionary path taken by a duplicate's interacting partners is highly stochastic in nature. Consequently, the fate of duplicate genes may not only be controlled by their own ability to accumulate mutations but also by how interacting partners cope with them.


Assuntos
Evolução Molecular , Duplicação Gênica , Seleção Genética , Adaptação Biológica , Simulação por Computador , Modelos Genéticos , Estabilidade Proteica
11.
J Mol Evol ; 88(10): 731-741, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230664

RESUMO

In many applications of evolutionary inference, a model of protein evolution needs to be fitted to the amino acid variation at individual sites in a multiple sequence alignment. Most existing models fall into one of two extremes: Either they provide a coarse-grained description that lacks biophysical realism (e.g., dN/dS models), or they require a large number of parameters to be fitted (e.g., mutation-selection models). Here, we ask whether a middle ground is possible: Can we obtain a realistic description of site-specific amino acid frequencies while severely restricting the number of free parameters in the model? We show that a distribution with a single free parameter can accurately capture the variation in amino acid frequency at most sites in an alignment, as long as we are willing to restrict our analysis to predicting amino acid frequencies by rank rather than by amino acid identity. This result holds equally well both in alignments of empirical protein sequences and of sequences evolved under a biophysically realistic all-atom force field. Our analysis reveals a near universal shape of the frequency distributions of amino acids. This insight has the potential to lead to new models of evolution that have both increased realism and a limited number of free parameters.


Assuntos
Aminoácidos , Evolução Molecular , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/genética , Modelos Genéticos , Alinhamento de Sequência
12.
J Mol Evol ; 88(5): 435-444, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32350572

RESUMO

High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demonstrate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with mutational and drift robustness, respectively.


Assuntos
Epistasia Genética , Taxa de Mutação , Modelos Genéticos , Mutagênese , Mutação
13.
Bioinformatics ; 35(20): 4176-4178, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30923831

RESUMO

MOTIVATION: Stochastic gene expression simulations often assume steady-state transcript levels, or they model transcription in more detail than translation. Moreover, they lack accessible programing interfaces, which limit their utility. RESULTS: We present Pinetree, a step-wise gene expression simulator with codon-specific translation rates. Pinetree models both transcription and translation in a stochastic framework with individual polymerase and ribosome-level detail. Written in C++ with a Python front-end, any user familiar with Python can specify a genome and simulate gene expression. Pinetree was designed to be efficient and scale to simulate large plasmids or viral genomes. AVAILABILITY AND IMPLEMENTATION: Pinetree is available on GitHub (https://github.com/benjaminjack/pinetree) and the Python Package Index (https://pypi.org/project/pinetree/).


Assuntos
Ribossomos , Software , Códon , Expressão Gênica
14.
Molecules ; 25(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575717

RESUMO

A key challenge in melanoma diagnosis is the large number of unnecessary biopsies on benign nevi, which requires significant amounts of time and money. To reduce unnecessary biopsies while still accurately detecting melanoma lesions, we propose using Raman spectroscopy as a non-invasive, fast, and inexpensive method for generating a "second opinion" for lesions being considered for biopsy. We collected in vivo Raman spectral data in the clinical skin screening setting from 52 patients, including 53 pigmented lesions and 7 melanomas. All lesions underwent biopsies based on clinical evaluation. Principal component analysis and logistic regression models with leave one lesion out cross validation were applied to classify melanoma and pigmented lesions for biopsy recommendations. Our model achieved an area under the receiver operating characteristic (ROC) curve (AUROC) of 0.903 and a specificity of 58.5% at perfect sensitivity. The number needed to treat for melanoma could have been decreased from 8.6 (60/7) to 4.1 (29/7). This study in a clinical skin screening setting shows the potential of Raman spectroscopy for reducing unnecessary skin biopsies with in vivo Raman data and is a significant step toward the application of Raman spectroscopy for melanoma screening in the clinic.


Assuntos
Melanoma/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Análise Espectral Raman/métodos , Biópsia , Humanos , Modelos Logísticos , Melanoma/diagnóstico , Melanoma/patologia , Análise de Componente Principal , Curva ROC , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Análise Espectral Raman/instrumentação
15.
Mol Biol Evol ; 35(10): 2487-2498, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085185

RESUMO

The Shine-Dalgarno (SD) sequence motif facilitates translation initiation and is frequently found upstream of bacterial start codons. However, thousands of instances of this motif occur throughout the middle of protein coding genes in a typical bacterial genome. Here, we use comparative evolutionary analysis to test whether SD sequences located within genes are functionally constrained. We measure the conservation of SD sequences across Enterobacteriales, and find that they are significantly less conserved than expected. Further, the strongest SD sequences are the least conserved whereas we find evidence of conservation for the weakest possible SD sequences given amino acid constraints. Our findings indicate that most SD sequences within genes are likely to be deleterious and removed via selection. To illustrate the origin of these deleterious costs, we show that ATG start codons are significantly depleted downstream of SD sequences within genes, highlighting the constraint that these sequences impose on the surrounding nucleotides to minimize the potential for erroneous translation initiation.


Assuntos
Evolução Molecular , Elementos Reguladores de Transcrição/genética , Substituição de Aminoácidos , Escherichia coli , Elongação Traducional da Cadeia Peptídica , Seleção Genética
16.
PLoS Biol ; 14(5): e1002452, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27138088

RESUMO

Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein-protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes.


Assuntos
Enzimas/química , Enzimas/metabolismo , Evolução Molecular , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Bases de Dados de Proteínas , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Entropy (Basel) ; 21(10)2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31662602

RESUMO

Homologous sequence alignments contain important information about the constraints that shape protein family evolution. Correlated changes between different residues, for instance, can be highly predictive of physical contacts within three-dimensional structures. Detecting such co-evolutionary signals via direct coupling analysis is particularly challenging given the shared phylogenetic history and uneven sampling of different lineages from which protein sequences are derived. Current best practices for mitigating such effects include sequence-identity-based weighting of input sequences and post-hoc re-scaling of evolutionary coupling scores. However, numerous weighting schemes have been previously developed for other applications, and it is unknown whether any of these schemes may better account for phylogenetic artifacts in evolutionary coupling analyses. Here, we show across a dataset of 150 diverse protein families that the current best practices out-perform several alternative sequence- and tree-based weighting methods. Nevertheless, we find that sequence weighting in general provides only a minor benefit relative to post-hoc transformations that re-scale the derived evolutionary couplings. While our findings do not rule out the possibility that an as-yet-untested weighting method may show improved results, the similar predictive accuracies that we observe across distinct weighting methods suggests that there may be little room for further improvement on top of existing strategies.

18.
BMC Genomics ; 19(1): 510, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969991

RESUMO

BACKGROUND: Alignment-free RNA quantification tools have significantly increased the speed of RNA-seq analysis. However, it is unclear whether these state-of-the-art RNA-seq analysis pipelines can quantify small RNAs as accurately as they do with long RNAs in the context of total RNA quantification. RESULT: We comprehensively tested and compared four RNA-seq pipelines for accuracy of gene quantification and fold-change estimation. We used a novel total RNA benchmarking dataset in which small non-coding RNAs are highly represented along with other long RNAs. The four RNA-seq pipelines consisted of two commonly-used alignment-free pipelines and two variants of alignment-based pipelines. We found that all pipelines showed high accuracy for quantifying the expression of long and highly-abundant genes. However, alignment-free pipelines showed systematically poorer performance in quantifying lowly-abundant and small RNAs. CONCLUSION: We have shown that alignment-free and traditional alignment-based quantification methods perform similarly for common gene targets, such as protein-coding genes. However, we have identified a potential pitfall in analyzing and quantifying lowly-expressed genes and small RNAs with alignment-free pipelines, especially when these small RNAs contain biological variations.


Assuntos
RNA/química , Análise de Sequência de RNA/métodos , Algoritmos , Área Sob a Curva , Sequenciamento de Nucleotídeos em Larga Escala , RNA/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Curva ROC
19.
Proc Natl Acad Sci U S A ; 117(46): 28549-28551, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33144506

Assuntos
Epidemias , Previsões
20.
BMC Genomics ; 18(1): 301, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28412930

RESUMO

BACKGROUND: Post-translational modification (PTM) of proteins is central to many cellular processes across all domains of life, but despite decades of study and a wealth of genomic and proteomic data the biological function of many PTMs remains unknown. This is especially true for prokaryotic PTM systems, many of which have only recently been recognized and studied in depth. It is increasingly apparent that a deep sampling of abundance across a wide range of environmental stresses, growth conditions, and PTM types, rather than simply cataloging targets for a handful of modifications, is critical to understanding the complex pathways that govern PTM deposition and downstream effects. RESULTS: We utilized a deeply-sampled dataset of MS/MS proteomic analysis covering 9 timepoints spanning the Escherichia coli growth cycle and an unbiased PTM search strategy to construct a temporal map of abundance for all PTMs within a 400 Da window of mass shifts. Using this map, we are able to identify novel targets and temporal patterns for N-terminal N α acetylation, C-terminal glutamylation, and asparagine deamidation. Furthermore, we identify a possible relationship between N-terminal N α acetylation and regulation of protein degradation in stationary phase, pointing to a previously unrecognized biological function for this poorly-understood PTM. CONCLUSIONS: Unbiased detection of PTM in MS/MS proteomics data facilitates the discovery of novel modification types and previously unobserved dynamic changes in modification across growth timepoints.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Acetilação , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptídeos/análise , Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA