Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682709

RESUMO

This study aimed to investigate the role of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) in glioblastoma (GBM) pathophysiology. To this end, PLOD2 protein expression was assessed by immunohistochemistry in two independent cohorts of patients with primary GBM (n1 = 204 and n2 = 203, respectively). Association with the outcome was tested by Kaplan−Meier, log-rank and multivariate Cox regression analysis in patients with confirmed IDH wild-type status. The biological effects and downstream mechanisms of PLOD2 were assessed in stable PLOD2 knock-down GBM cell lines. High levels of PLOD2 significantly associated with (p1 = 0.020; p2< 0.001; log-rank) and predicted (cohort 1: HR = 1.401, CI [95%] = 1.009−1.946, p1 = 0.044; cohort 2: HR = 1.493; CI [95%] = 1.042−2.140, p2 = 0.029; Cox regression) the poor overall survival of GBM patients. PLOD2 knock-down inhibited tumor proliferation, invasion and anchorage-independent growth. MT1-MMP, CD44, CD99, Catenin D1 and MMP2 were downstream of PLOD2 in GBM cells. GBM cells produced soluble factors via PLOD2, which subsequently induced neutrophils to acquire a pro-tumor phenotype characterized by prolonged survival and the release of MMP9. Importantly, GBM patients with synchronous high levels of PLOD2 and neutrophil infiltration had significantly worse overall survival (p < 0.001; log-rank) compared to the other groups of GBM patients. These findings indicate that PLOD2 promotes GBM progression and might be a useful therapeutic target in this type of cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Prognóstico , Microambiente Tumoral
2.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269569

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of tumor cells harboring properties that include self-renewal, multi-lineage differentiation, tumor reconstitution, drug resistance and invasiveness, making them key players in tumor relapse. In the present paper, we develop new CSC models and analyze the molecular pathways involved in survival to identify targets for the establishment of novel therapies. Endometrial carcinoma-derived stem-like cells (ECSCs) were isolated from carcinogenic gynecological tissue and analyzed regarding their expression of prominent CSC markers. Further, they were treated with the MYC-signaling inhibitor KJ-Pyr-9, chemotherapeutic agent carboplatin and type II diabetes medication metformin. ECSC populations express common CSC markers, such as Prominin-1 and CD44 antigen as well as epithelial-to-mesenchymal transition markers, Twist, Snail and Slug, and exhibit the ability to form free-floating spheres. The inhibition of MYC signaling and treatment with carboplatin as well as metformin significantly reduced the cell survival of ECSC-like cells. Further, treatment with metformin significantly decreased the mitochondrial membrane potential of ECSC-like cells, while the extracellular lactate concentration was increased. The established ECSC-like populations represent promising in vitro models to further study the contribution of ECSCs to endometrial carcinogenesis. Targeting MYC signaling as well as mitochondrial bioenergetics has shown promising results in the diminishment of ECSCs, although molecular signaling pathways need further investigations.


Assuntos
Carboplatina/farmacologia , Neoplasias do Endométrio/metabolismo , Metformina/farmacologia , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Am J Respir Cell Mol Biol ; 65(5): 544-554, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34181859

RESUMO

Human rhinovirus (RV) is a major risk factor for chronic obstructive pulmonary disease (COPD) and asthma exacerbations. The exploration of RV pathogenesis has been hampered by a lack of disease-relevant model systems. We performed a detailed characterization of host responses to RV infection in human lung tissue ex vivo and investigated whether these responses are disease relevant for patients with COPD and asthma. In addition, impact of the viral replication inhibitor rupintrivir was evaluated. Human precision-cut lung slices (PCLS) were infected with RV1B with or without rupintrivir. At Days 1 and 3 after infection, RV tissue localization, tissue viability, and viral load were determined. To characterize host responses to infection, mediator and whole genome analyses were performed. RV successfully replicated in PCLS airway epithelial cells and induced both antiviral and proinflammatory cytokines such as IFNα2a, CXCL10, CXCL11, IFN-γ, TNFα, and CCL5. Genomic analyses revealed that RV not only induced antiviral immune responses but also triggered changes in epithelial cell-associated pathways. Strikingly, the RV response in PCLS was reflective of gene expression changes described in patients with COPD and asthma. Although RV-induced host immune responses were abrogated by rupintrivir, RV-triggered epithelial processes were largely refractory to antiviral treatment. Detailed analysis of RV-infected human PCLS and comparison with gene signatures of patients with COPD and asthma revealed that the human RV PCLS model represents disease-relevant biological mechanisms that can be partially inhibited by a well-known antiviral compound and provide an outstanding opportunity to evaluate novel therapeutics.


Assuntos
Asma/genética , Interações Hospedeiro-Patógeno/genética , Pulmão/virologia , Infecções por Picornaviridae/genética , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Antivirais/farmacologia , Asma/patologia , Brônquios/patologia , Brônquios/fisiologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Isoxazóis/farmacologia , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Pirrolidinonas/farmacologia , Rhinovirus/patogenicidade , Valina/análogos & derivados , Valina/farmacologia
4.
Thorax ; 76(1): 64-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33109690

RESUMO

INTRODUCTION: Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%-40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. METHODS: It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl-) channel modulators to investigate their role during the HRSV life-cycle. RESULTS: We demonstrate the requirement for TMEM16A, a calcium-activated Cl- channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. DISCUSSION: These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.


Assuntos
Anoctamina-1/farmacologia , Anticorpos Antivirais/imunologia , Proteínas de Neoplasias/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/imunologia , Células Cultivadas , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia
5.
Clin Gastroenterol Hepatol ; 19(8): 1726-1729.e3, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33516952

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects the nasopharynx and lungs and causes coronavirus disease-2019 (COVID-19). It may impact the heart, brain, kidney, and liver.1 Although functional impairment of the liver has been correlated with worse clinical outcomes, little is known about the pathophysiology of hepatic injury and repair in COVID-19.2,3 Histologic evaluation has been limited to small numbers of COVID-19 cases with no control subjects2,4 and demonstrated largely heterogeneous patterns of pathology.2,3.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , Rim , Fígado , SARS-CoV-2
7.
J Gastroenterol Hepatol ; 36(5): 1334-1345, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33091158

RESUMO

BACKGROUND AND AIM: Cholangiocarcinoma has an unimproved prognosis. Interleukin 6 (IL-6) has an oncogenic potential in some cancer diseases. However, the role of IL-6 in cholangiocarcinoma carcinogenesis is not well understood. The current study investigated the role of IL-6 signaling in cholangiocarcinoma carcinogenesis and efficacy of siltuximab treatment on cholangiocarcinoma in vitro and in vivo. METHODS: The expression of IL-6 was analyzed on human cholangiocarcinoma cell lines and murine and human cholangiocarcinoma tissues, using reverse transcription real-time polymerase chain reaction and immunohistochemistry. In addition, the effect of anti-IL-6 chimeric monoclonal antibody, siltuximab, was investigated in vitro by proliferation, migration, and two-dimensional and three-dimensional invasion assays and in vivo by xenograft mouse model. Western blot was applied to study the molecular alteration. RESULTS: Our result shows high expression of IL-6 in human cholangiocarcinoma cells, and IL-6 stimulants enhance cholangiocarcinoma cell proliferation. In addition, murine and human cholangiocarcinoma tissues express significantly higher levels of IL-6, compared with adjacent non-tumor tissues. On the cholangiocarcinoma engineered mouse model, IL-6 level is associated with tumor volume. Taken together, our data indicate an oncogenic potential of IL-6 in cholangiocarcinoma carcinogenesis. Siltuximab sufficiently abrogates IL-6 signaling and inhibits cholangiocarcinoma progression in vitro and in vivo. The results additionally indicate a relative alteration of IL-6 signaling and its molecular targets, such as STAT3, Wnt/ß-catenin, and mesenchymal markers. CONCLUSIONS: Interleukin 6 plays an essential role in cholangiocarcinoma carcinogenesis, and siltuximab has the potential to be considered as a new treatment option for cholangiocarcinoma patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Interleucina-6/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Interleucina-6/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Fator de Transcrição STAT3 , Proteínas Wnt , beta Catenina
8.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445612

RESUMO

Prostate cancer is a common cause of death worldwide. Here, we isolated cancer stem cells (CSCs) from four adenocarcinomas of the prostate (Gleason scores from 3 + 3 up to 4 + 5). CSCs were characterized by the expression of the stem cell markers TWIST, the epithelial cell adhesion molecule (EPCAM), the transcription factors SNAI1 (SNAIL) and SNAI2 (SLUG) and cancer markers such as CD44 and prominin-1 (CD133). All investigated CSC populations contained a fraction highly positive for aldehyde dehydrogenase (ALDH) function and displayed robust expressions of programmed cell death 1 (PD-1) ligands. Furthermore, we investigated immunotherapeutic approaches but had no success even with the clinically used PD-1 inhibitor pembrolizumab. In addition, we studied another death-inducing pathway via interferon gamma signaling and detected high-level upregulations of human leukocyte antigen A (HLA-A) and beta 2-microglobulin (B2M) with only moderate killing efficacy. To examine further killing mechanisms in prostate cancer stem cells (PCSCs), we analyzed NF-κB signaling. Surprisingly, two patient-specific populations of PCSCs were found: one with canonical NF-κB signaling and another one with blunted NF-κB activation, which can be efficiently killed by tumor necrosis factor (TNF). Thus, culturing of PCSCs and analysis of respective NF-κB induction potency after surgery might be a powerful tool for optimizing patient-specific treatment options, such as the use of TNF-inducing chemotherapeutics and/or NF-κB inhibitors.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/patologia , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Fator de Necrose Tumoral alfa/farmacologia , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Masculino , NF-kappa B/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas
9.
Gut ; 68(7): 1287-1296, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30901310

RESUMO

OBJECTIVE: We aimed at the identification of genetic alterations that may functionally substitute for CTNNB1 mutation in ß-catenin-activated hepatocellular adenomas (HCAs) and hepatocellular carcinoma (HCC). DESIGN: Large cohorts of HCA (n=185) and HCC (n=468) were classified using immunohistochemistry. The mutational status of the CTNNB1 gene was determined in ß-catenin-activated HCA (b-HCA) and HCC with at least moderate nuclear CTNNB1 accumulation. Ultra-deep sequencing was used to characterise CTNNB1wild-type and ß-catenin-activated HCA and HCC. Expression profiling of HCA subtypes was performed. RESULTS: A roof plate-specific spondin 2 (RSPO2) gene rearrangement resulting from a 46.4 kb microdeletion on chromosome 8q23.1 was detected as a new morphomolecular driver of ß-catenin-activated HCA. RSPO2 fusion positive HCA displayed upregulation of RSPO2 protein, nuclear accumulation of ß-catenin and transcriptional activation of ß-catenin-target genes indicating activation of Wingless-Type MMTV Integration Site Family (WNT) signalling. Architectural and cytological atypia as well as interstitial invasion indicated malignant transformation in one of the RSPO2 rearranged b-HCAs. The RSPO2 gene rearrangement was also observed in three ß-catenin-activated HCCs developing in context of chronic liver disease. Mutations of the human telomerase reverse transcriptase promoter-known to drive malignant transformation of CTNNB1-mutated HCA-seem to be dispensable for RSPO2 rearranged HCA and HCC. CONCLUSION: The RSPO2 gene rearrangement leads to oncogenic activation of the WNT signalling pathway in HCA and HCC, represents an alternative mechanism for the development of b-HCA and may drive malignant transformation without additional TERT promoter mutation.


Assuntos
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Rearranjo Gênico/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas/genética , beta Catenina/genética , Adenoma de Células Hepáticas/patologia , Adolescente , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Criança , Estudos de Coortes , Feminino , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Exp Cell Res ; 364(1): 59-67, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29366806

RESUMO

Cholangiocarcinoma (CC) is the second most common primary hepatic malignancy. CC treatment options are very limited especially for patients with distant metastasis. Kangai 1 C-terminal interacting tetraspanin (KITENIN) is highly expressed in numerous cancers, but the role of KITENIN in CC remains unknown. Here, we have investigated for the first time the function of KITENIN in human CC cell lines (TFK-1, SZ-1), tissues and a CC mouse model (Alb-Cre/LSL-KRASG12D/p53L/L). KITENIN was expressed in 92.2% of human CC tissues, in murine CC samples and also in human CC cell lines. Knockdown of KITENIN by small interfering RNA (siRNA) effectively reduced proliferation, migration, invasion and colony formation in both intra- and extra-hepatic CC cells. The expression of epithelial-mesenchymal transition (EMT) markers like N-cadherin, Vimentin, Snail and Slug were suppressed in KITENIN knockdown CC cells. Our results indicate that KITENIN is crucial for cholangiocarcinogenesis and it might become a potential therapeutic target for human CC treatment.


Assuntos
Neoplasias dos Ductos Biliares/prevenção & controle , Proteínas de Transporte/antagonistas & inibidores , Proliferação de Células , Colangiocarcinoma/prevenção & controle , Inativação Gênica , Proteínas de Membrana/antagonistas & inibidores , RNA Interferente Pequeno/genética , Animais , Apoptose , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Movimento Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células Tumorais Cultivadas
11.
Mol Cell ; 43(4): 663-72, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21855804

RESUMO

The LXCXE peptide motif facilitates interaction between the RB tumor suppressor and a large number of cellular proteins that are expected to impinge on diverse biological processes. In vitro and in vivo analyses demonstrated that LXCXE binding function is dispensable for RB promoter association and control of basal gene expression. Dependence on this function of RB is unmasked after DNA damage, wherein LXCXE binding is essential for exerting control over E2F3 and suppressing cell-cycle progression in the presence of genotoxic stress. Gene expression profiling revealed that the transcriptional program coordinated by this specific aspect of RB is associated with progression of human hepatocellular carcinoma and poor disease outcome. Consistent with these findings, biological challenge revealed a requirement for LXCXE binding in suppression of genotoxin-initiated hepatocellular carcinoma in vivo. Together, these studies establish an essential role of the LXCXE binding motif for RB-mediated transcriptional control, response to genotoxic insult, and tumor suppression.


Assuntos
Dano ao DNA , Regulação da Expressão Gênica , Proteína do Retinoblastoma/fisiologia , Transcrição Gênica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo
12.
BMC Surg ; 19(1): 72, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262302

RESUMO

BACKROUND: Several studies have demonstrated a direct correlation between lymph node yield and survival after colectomy for cancer. Complete mesocolic excision (CME) in right colectomy (RC) reduces local recurrence but is technically demanding. Here we report our early single center experience with robotic right colectomy comparing our standardized bottom-to-up (BTU) approach of robotic RC with CME and central vessel ligation (CVL) facilitated by a suprapubic access with the "classical" medial-to-lateral (MTL) strategy. METHODS: A 4-step BTU approach of robotic RC guided by embryonal planes in the process of retrocolic mobilization with suprapubic port placement was performed in the BTU-group (n = 24; all with intention to treat cancer). In step 1 CME was initiated with caudolateral mobilization of the right colon guided by the fascia of Toldt across the duodenum and up to the Trunk of Henle. Subsequently, dissection was performed BTU right of the middle supramesenteric vessels with central ileocolic vessel ligation in step 2. Subsequent to separation of the transverse retromesenteric space and completion of mobilization the hepatic flexure in step 3, the transverse mesocolon was then transected right of the middle colic vessels in step 4. An extracorporeal side to side anastomosis was performed. We compared the outcome of the BTU-group with a MTL-group (n = 7). RESULTS: Patient characteristics like age, gender, BMI, comorbidity (ASA) and M-status were comparable among groups. There was no conversion. Overall complication rate was 35.5%. We experienced no anastomoses insufficiency, grade Dindo/Clavien III/IV complication or mortality in this study. Type I and II complications and surgical characteristics incl. OR-time, ICU- and hospital-stay were comparable between the two groups. However, the lymph node yield was superior in the BTU-group (mean 40.2 ± 17.1) when compared with the MTL-group (16,3 nodes ±8.5; p <  0,001). CONCLUSIONS: Compared to the classical MTL approach, robotic suprapubic BTU RC changes from a search of the layers bordering the oncological dissection to a consequent utilization of the planes as a retro-mesocolic guide during CME. The BTU strategy could bear the potential to increase the lymph node yield. Robotic systems may provide the technical requirements to combine advantages of both open and minimally invasive RC.


Assuntos
Colectomia/métodos , Neoplasias do Colo/cirurgia , Mesocolo/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/patologia , Dissecação , Feminino , Humanos , Tempo de Internação , Ligadura , Linfonodos/patologia , Masculino , Estudos Retrospectivos
13.
Am J Pathol ; 186(4): 938-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896692

RESUMO

The single nucleotide polymorphism located within the IFNL3 (also known as IL28B) promoter is one of the host factors associated with hepatitis C virus (HCV) clearance by interferon (IFN)-α therapy; however the mechanism remains unknown. We investigated how IL28B gene polymorphism influences HCV clearance with infected primary human hepatocytes, liver biopsies, and hepatoma cell lines. Our study confirms that the rs12979860-T/T genotype has a strong correlation with ss469415590-ΔG/ΔG single nucleotide polymorphism that produces IFN-λ4 protein. We found that IFN-α and IFN-λ1 antiviral activity against HCV was impaired in IL28B T/T infected hepatocytes compared with C/C genotype. Western blot analysis showed that IL28B TT genotype hepatocytes expressed higher levels of IFN-λ proteins (IL28B, IL-29), preactivated IFN-stimulated gene (ISG) expression, and impaired Stat phosphorylation when stimulated with either IFN-α or IFN-λ1. Furthermore, we showed that silencing IFN-λ1 in T/T cell line reduced basal ISG expression and improved antiviral activity. Likewise, overexpression of IFN-λ (1 to 4) in C/C cells induced basal ISG expression and prevented IFN-α antiviral activity. We showed that IFN-λ4, produced at low level only in T/T cells induced expression of IL28B and IL-29 and prevented IFN-α antiviral activity in HCV cell culture. Our results suggest that IFN-λ4 protein expression associated with the IL28B-T/T variant preactivates the Janus kinase-Stat signaling, leading to impaired HCV clearance by both IFN-α and IFN-λ.


Assuntos
Hepatite C Crônica/tratamento farmacológico , Interleucinas/genética , Polimorfismo de Nucleotídeo Único/genética , Antivirais/farmacologia , Genótipo , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferons , Neoplasias Hepáticas/metabolismo
14.
Neurosurg Rev ; 40(1): 129-134, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27215911

RESUMO

Brain arteriovenous malformations (bAVMs) are severe conditions which, upon rupture, cause debilitating neurological deficits and even death. The exact cellular and molecular mechanisms associated with bAVM rupture are currently unclear. The objective of this study was to explore the potential role of CEA-related cell adhesion molecule-1 (CEACAM1) in bAVM pathophysiology. Expression and localization of CEACAM1 were assessed immunohistochemically in tissue microarrays from bAVM patients (n = 60). The association of CEACAM1 with clinical parameters was analyzed with Spearman's rank correlation coefficient and chi-square test. The predictive value of CEACAM1 was tested using logistic regression analysis. CEACAM1 was highly expressed in tissue-infiltrating neutrophil granulocytes. High levels of CEACAM1-positive cells were associated with bAVM rupture (hemorrhage), but not with arteriovenous malformation (AVM) size, preoperative embolization, or seizure. This association was significant (p = 0.029, chi-square) in male but not in female patients, and high CEACAM1-positive immune infiltration showed predictive significance for hemorrhage in male bAVM patients only (OR = 6.50, 95 % CI 1.09-38.63, p = 0.040). Within the ruptured bAVM group, patients with a short hemorrhage to surgery (HTS) time interval had higher levels of CEACAM1 immune infiltration than patients with long HTS. This decrease in the levels of CEACAM1 immune infiltration between the HTS short and HTS long groups was, however, significant only in female patients (p = 0.022, chi-square). Our findings substantiate the role of inflammation in the pathophysiology of bAVM and suggest the presence of sexual dimorphism in this disease.


Assuntos
Antígenos CD/metabolismo , Encéfalo/cirurgia , Moléculas de Adesão Celular/metabolismo , Angiografia Cerebral , Malformações Arteriovenosas Intracranianas/cirurgia , Hemorragias Intracranianas/etiologia , Tomografia Computadorizada por Raios X/efeitos adversos , Encéfalo/fisiopatologia , Angiografia Cerebral/efeitos adversos , Embolização Terapêutica/efeitos adversos , Feminino , Humanos , Malformações Arteriovenosas Intracranianas/diagnóstico , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Caracteres Sexuais
15.
Mol Carcinog ; 55(12): 2037-2050, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26757360

RESUMO

Palliative treatment options for human cholangiocarcinoma (CCC) are quite limited and new therapeutic strategies are of utmost need. c-MET has been shown to be deregulated in many cancers, but the role of c-MET in the carcinogenesis of CCC remains unclear. The main purpose of this study is to evaluate the expression and also to investigate the role of c-MET and its effective inhibition for the treatment of CCC. In this study we investigated the effects of LY2801653, a small-molecule inhibitor with potent activity against MET kinase, in human CCC cell lines and in vivo using a xenograft mouse model. We have investigated the role of c-MET and its inhibitory effects on migration, invasion, colony formation, MET downstream targets, and CCC tumor growth. We also analyzed the role of apoptosis and senescence as well as the influence of hypoxia in this context. c-MET and p-MET were expressed in 72% and 12.5% of human CCC tissues and in TFK-1, SZ-1 cell lines. MET inhibition was achieved by blocking phosphorylation of MET with LY2801653 and subsequent down regulation of c-MET downstream targets. Treatment showed in a xenograft model potent anti-tumor activity. LY2801653 is an effective inhibitor and suppress the proliferation of CCC cells as well as the growth of xenograft tumors. Therefore, inhibition of c-MET could be a possible alternative approach for the treatment of human CCC. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Indazóis/uso terapêutico , Niacinamida/análogos & derivados , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Apoptose/efeitos dos fármacos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Humanos , Camundongos Nus , Terapia de Alvo Molecular , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Niacinamida/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-met/análise , Transdução de Sinais/efeitos dos fármacos
17.
Hepatology ; 57(3): 1035-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23172661

RESUMO

UNLABELLED: The Hedgehog signaling pathway plays a pivotal role during embryonic development, stem cell maintenance, and wound healing. Hedgehog signaling also is deregulated in many cancers. However, the role of this signaling pathway in the carcinogenesis of cholangiocarcinoma (CCC) is still unknown. In this study, we investigated the effects of Hedgehog inhibition by cyclopamine and 5E1 in cultured human CCC cell lines and in vivo using a xenograft mouse model. We also investigated the involvement of Hedgehog in epithelial to mesenchymal transition (EMT), migration, and CCC tumor growth. Sonic hedgehog (Shh) ligand was highly expressed in 89% of human CCC tissues and in CCC cell lines. Cyclopamine and 5E1 treatments effectively inhibited cell proliferation, migration, and invasion by down-regulating the Hedgehog target genes glioblastoma 1 and glioblastoma 2. In vitro and in vivo, we detected an increase in epithelial marker, E-cadherin, after Hedgehog inhibition. In addition, we saw an increase in necrotic areas and a decrease in mitotic figures in cyclopamine and 5E1-treated CCC xenograft tumors. CONCLUSION: This study supports the presence of autocrine Hedgehog signaling in human CCC, where CCC cells produce and respond to Shh ligand. Blocking the Hedgehog pathway inhibited EMT and decreased the viability of CCC cells. In addition, cyclopamine and 5E1 inhibited the growth of CCC xenograft tumors.


Assuntos
Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Alcaloides de Veratrum/farmacologia , Animais , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/fisiologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Necrose , Transplante de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Curr Med Chem ; 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38361349

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) has a poor prognosis and only limited palliative treatment options. The deficiency of adiponectin and adenosine monophosphate-activated protein kinase (AMPK) signaling was reported in several malignancies, but the alteration of these proteins in CCA is still unclear. OBJECTIVES: This study aimed to assess the role of adiponectin and AMPK signaling in CCA. Furthermore, AdipoRon, a novel adiponectin receptor (AdipoR) agonist, was evaluated in vitro and in vivo as a new anti-tumor therapy for CCA. METHODS: The expression of AdipoR1 and p-AMPKα in human tissue microarrays (TMAs) was evaluated by immunohistochemistry staining (IHC). The effect of 2-(4-Benzoylphenoxy)-N-[1-(phenylmethyl)- 4-piperidinyl]-acetamide (AdipoRon) was investigated in vitro with proliferation, crystal violet, migration, invasion, colony formation, senescence, cell cycle and apoptosis assays and in vivo using a CCA engineered mouse model (AlbCre/LSL-KRASG12D/p53L/L). RT-qPCR and western blot methods were applied to study molecular alterations in murine tissues. RESULTS: AdipoR1 and p-AMPKα were impaired in human CCA tissues, compared to adjacent non-tumor tissue. There was a positive correlation between the AdipoR1 and p-AMPKα levels in CCA tissues. Treatment with AdipoRon inhibited proliferation, migration, invasion and colony formation and induced apoptosis in a time- and dose-dependent manner in vitro(p<0.05). In addition, AdipoRon reduced the number of CCA and tumor volume, prolonged survival, and decreased metastasis and ascites in the treated group compared to the control group (p<0.05). CONCLUSIONS: AdipoR1 and p-AMPKα are impaired in CCA tissues, and AdipoRon effectively inhibits CCA in vitro and in vivo. Thus, AdipoRon may be considered as a potential anti-tumor therapy in CCA.

19.
Gastroenterology ; 143(3): 811-820.e15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641068

RESUMO

BACKGROUND & AIMS: Histone deacetylation regulates chromatin remodeling and transcriptional down-regulation of specific genomic regions; it is altered in many types of cancer cells. We searched for microRNAs (miRs) that are affected by histone deacetylation and investigated the effects in hepatocellular carcinoma (HCC) cells. METHODS: HCC cell lines (HepG2, HLE, HLF, and Huh7) and immortalized liver cell lines (THLE-2 and THLE-3) were incubated with the histone deacetylase inhibitor trichostatin A. Differentially expressed messenger RNAs (mRNAs) and miRs were identified by expression profiling. Small interfering RNAs were used to reduce levels of histone deacetylases (HDAC)1-3, and HCC cell lines were transfected with miR-449. We evaluated growth of xenograft tumors from modified cells in nude mice. Cells were analyzed by immunoblot and luciferase reporter assays. We analyzed HCC samples from 23 patients. RESULTS: HDAC1-3 were up-regulated in HCC samples from patients. In cell lines, inhibition of HDAC significantly increased levels of hsa-miR-449a. c-MET mRNA, which encodes the receptor tyrosine kinase for hepatocyte growth factor, is a target of miR-449. Incubation of HCC cells with trichostatin A or transfection with miR-449 reduced expression of c-MET and phosphorylation of extracellular signal-regulated kinases 1 and 2 (downstream effectors of c-MET), increased apoptosis, and reduced proliferation. Huh-7 cells transfected with miR-449 formed tumors more slowly in mice than cells expressing control miRs. HCC samples from patients had lower levels of miR-449 and higher levels of c-MET than human reference. CONCLUSIONS: In HCC cells, up-regulation of HDAC1-3 reduces expression of miR-449. miR-449 binds c-MET mRNA to reduce its levels, promoting apoptosis and reducing proliferation of liver cells. Expression of miR-449 slows growth of HCC xenograft tumors in mice; this miR might function as a tumor suppressor.


Assuntos
Carcinoma Hepatocelular/enzimologia , Fator de Crescimento de Hepatócito/metabolismo , Histona Desacetilases/metabolismo , Neoplasias Hepáticas/enzimologia , MicroRNAs/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Apoptose , Sítios de Ligação , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HEK293 , Células Hep G2 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral
20.
Cells ; 12(20)2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887342

RESUMO

Progesterone Receptor Membrane Component 1 (PGRMC1) is a tumour-promoting factor in several types of cancer but its role in brain tumours is poorly characterized thus far. Our study aimed to determine the effect of PGRMC1 on glioblastoma (GBM) pathophysiology using two independent cohorts of IDH wild-type GBM patients and stable knockdown GBM models. We found that high levels of PGRMC1 significantly predicted poor overall survival in both cohorts of GBM patients. PGRMC1 promoted the proliferation, anchorage-independent growth, and invasion of GBM cells. We identified Integrin beta-1 (ITGB1) and TCF 1/7 as potential members of the PGRMC1 pathway in vitro. The levels of ITGB1 and PGRMC1 also correlated in neoplastic tissues from GBM patients. High expression of PGRMC1 rendered GBM cells less susceptible to the standard GBM chemotherapeutic agent temozolomide but more susceptible to the ferroptosis inducer erastin. Finally, PGRMC1 enhanced Interleukin-8 production in GBM cells and promoted the recruitment of neutrophils. The expression of PGRMC1 significantly correlated with the numbers of tumour-infiltrating neutrophils also in tissues from GBM patients. In conclusion, PGRMC1 enhances tumour-related inflammation and promotes the progression of GBM. However, PGRMC1 might be a promising target for novel therapeutic strategies using ferroptosis inducers in this type of cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Receptores de Progesterona/metabolismo , Processos Neoplásicos , Temozolomida , Microambiente Tumoral , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA