Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 4(3): 100166, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909902

RESUMO

Phage display and mirror-image phage display are commonly used techniques for the identification of binders that are specific to predefined targets. Recent studies demonstrated the effectiveness of next-generation sequencing (NGS) by increasing the amount of information extracted from selections. This allows for a better analysis and increases the possibility to select effective binders. A potential downside to NGS analysis of phage display selections is the increased workload that is needed to analyze the obtained information. Here, we report on the development of TSAT (target-specific analysis tool), software for user-friendly and efficient analysis of peptide sequence data from NGS of phage display selections.

2.
FEBS Lett ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39160442

RESUMO

The human Atg8 family member GABARAP is involved in numerous autophagy-related and -unrelated processes. We recently observed that specifically the deficiency of GABARAP enhances epidermal growth factor receptor (EGFR) degradation upon ligand stimulation. Here, we report on two putative LC3-interacting regions (LIRs) within EGFR, the first of which (LIR1) is selected as a GABARAP binding site in silico. Indeed, in vitro interaction studies reveal preferential binding of LIR1 to GABARAP and GABARAPL1. Our X-ray data demonstrate interaction of core LIR1 residues FLPV with both hydrophobic pockets of GABARAP suggesting canonical binding. Although LIR1 occupies the LIR docking site, GABARAP Y49 and L50 appear dispensable in this case. Our data support the hypothesis that GABARAP affects the fate of EGFR at least in part through direct binding.

3.
J Mol Biol ; 436(5): 168458, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38280482

RESUMO

Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.


Assuntos
Proteínas de Bactérias , Flavoproteínas , Fotorreceptores Microbianos , Pseudomonas fluorescens , Luz , Oxigênio , Transdução de Sinais , Solventes , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/metabolismo , Domínios Proteicos , Conformação Proteica em alfa-Hélice , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Optogenética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Mutação , Cristalografia por Raios X
4.
Sci Rep ; 14(1): 19556, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174611

RESUMO

Islet amyloid polypeptide (IAPP) is co-secreted with insulin from pancreatic ß-cells. Its oligomerisation is regarded as disease driving force in type 2 diabetes (T2D) pathology. Up to now, IAPP oligomers have been detected in affected tissues. IAPP oligomer concentrations in blood have not been analysed so far. Using the IAPP single-oligomer-sensitive and monomer-insensitive surface-based fluorescence intensity distribution analysis (sFIDA) technology, levels of IAPP oligomers in blood plasma from healthy controls and people with T2D in different disease stages where determined. Subsequently, the level of IAPP oligomerisation was introduced as the ratio between the IAPP oligomers determined with sFIDA and the total IAPP concentration determined with ELISA. Highest oligomerisation levels were detected in plasma of people with T2D without late complication and without insulin therapy. Their levels stand out significantly from the control group. Healthy controls presented with the lowest oligomerisation levels in plasma. In people with T2D without complications, IAPP oligomerisation levels correlated with disease duration. The results clearly demonstrate that IAPP oligomerisation in insulin-naïve patients correlates with duration of T2D. Although a correlation per se does not identify, which is cause and what is consequence, this result supports the hypothesis that IAPP aggregation is the driving factor of T2D development and progression. The alternative and conventional hypothesis explains development of T2D with increasing insulin resistance causing exhaustion of pancreatic ß-cells due to over-secretion of insulin, and thus IAPP, too, resulting in subsequent IAPP aggregation and fibril deposition in the pancreas. Further experiments and comparative analyses with primary tissues are warranted.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/sangue , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Multimerização Proteica , Adulto , Estudos de Casos e Controles , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
5.
Nat Commun ; 15(1): 1610, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383529

RESUMO

Liquid-liquid phase separation is the key process underlying formation of membrane-less compartments in cells. A highly dynamic cellular body with rapid component exchange is Cajal body (CB), which supports the extensive compositional dynamics of the RNA splicing machinery, spliceosome. Here, we select an arginine-glycine (RG)-rich segment of coilin, the major component of CB, establish its RNA-induced phase separation, and through combined use of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) probes, interrogate its dynamics within the crowded interior of formed droplets. Taking advantage of glycine-based singlet-states, we show that glycines retain a large level of sub-nanoseconds dynamics inside the coilin droplets. Furthermore, the continuous-wave (CW) and electron-electron dipolar (PELDOR) and electron-nucleus hyperfine coupling EPR data (HYSCORE) support the RNA-induced formation of dynamic coilin droplets with high coilin peptide concentrations. The combined NMR and EPR data reveal the high dynamics of the RG-rich coilin within droplets and suggest its potential role in the large dynamics of CBs.


Assuntos
Arginina , Proteínas Nucleares , Proteínas Nucleares/genética , Glicina , Elétrons , RNA , Corpos Enovelados
6.
Sci Rep ; 14(1): 19099, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154065

RESUMO

Copper chaperones of the ATX1 family are found in a wide range of organisms where these essential soluble carriers strictly control the transport of monovalent copper across the cytoplasm to various targets in diverse cellular compartments thereby preventing detrimental radical formation catalyzed by the free metal ion. Notably, the ATX1 family in plants contains two distinct forms of the cellular copper carrier. In addition to ATX1 having orthologs in other species, they also contain the copper chaperone CCH. The latter features an extra C-terminal extension whose function is still unknown. The secondary structure of this extension was predicted to be disordered in previous studies, although this has not been experimentally confirmed. Solution NMR studies on purified CCH presented in this study disclose that this region is intrinsically disordered regardless of the chaperone's copper loading state. Further biophysical analyses of the purified metallochaperone provide evidence that the C-terminal extension stabilizes chaperone dimerization in the copper-free and copper-bound states. A variant of CCH lacking the C-terminal extension, termed CCHΔ, shows weaker dimerization but similar copper binding. Computational studies further corroborate the stabilizing role of the C-terminal extension in chaperone dimerization and identify key residues that are vital to maintaining dimer stability.


Assuntos
Cobre , Chaperonas Moleculares , Multimerização Proteica , Cobre/metabolismo , Cobre/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ligação Proteica , Arabidopsis/metabolismo , Modelos Moleculares
7.
ACS Chem Neurosci ; 15(14): 2600-2611, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957957

RESUMO

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-ß (Aß) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aß42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aß42 aggregation and eliminate Aß42 aggregates. Additionally, all of the peptides showed an affinity for Aß42. This study is the first to describe the potential of crotamine derivative peptides against Aß42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.


Assuntos
Peptídeos beta-Amiloides , Venenos de Crotalídeos , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Humanos , Animais , Agregados Proteicos/efeitos dos fármacos , Venenos de Serpentes/química , Peptídeos/farmacologia , Peptídeos/química , Crotalus
8.
Br J Pharmacol ; 181(12): 1734-1756, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38157867

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain affects up to 10% of the global population and is caused by an injury or a disease affecting the somatosensory, peripheral, or central nervous system. NP is characterized by chronic, severe and opioid-resistant properties. Therefore, its clinical management remains very challenging. The N-type voltage-gated calcium channel, Cav2.2, is a validated target for therapeutic intervention in chronic and neuropathic pain. The conotoxin ziconotide (Prialt®) is an FDA-approved drug that blocks Cav2.2 channel but needs to be administered intrathecally. Thus, although being principally efficient, the required application route is very much in disfavour. EXPERIMENTAL APPROACH AND KEY RESULTS: Here, we describe an orally available drug candidate, RD2, which competes with ziconotide binding to Cav2.2 at nanomolar concentrations and inhibits Cav2.2 almost completely reversible. Other voltage-gated calcium channel subtypes, like Cav1.2 and Cav3.2, were affected by RD2 only at concentrations higher than 10 µM. Data from sciatic inflammatory neuritis rat model demonstrated the in vivo proof of concept, as low-dose RD2 (5 mg·kg-1) administered orally alleviated neuropathic pain compared with vehicle controls. High-dose RD2 (50 mg·kg-1) was necessary to reduce pain sensation in acute thermal response assessed by the tail flick test. CONCLUSIONS AND IMPLICATIONS: Taken together, these results demonstrate that RD2 has antiallodynic properties. RD2 is orally available, which is the most convenient application form for patients and caregivers. The surprising and novel result from standard receptor screens opens the room for further optimization into new promising drug candidates, which address an unmet medical need.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo N , Neuralgia , Animais , Humanos , Masculino , Camundongos , Ratos , Administração Oral , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo N/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , ômega-Conotoxinas/administração & dosagem , ômega-Conotoxinas/farmacologia , ômega-Conotoxinas/uso terapêutico , Ratos Endogâmicos Lew
9.
Comput Struct Biotechnol J ; 23: 417-430, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38223341

RESUMO

ß-Structure-rich amyloid fibrils are hallmarks of several diseases, including Alzheimer's (AD), Parkinson's (PD), and type 2 diabetes (T2D). While amyloid fibrils typically consist of parallel ß-sheets, the anti-parallel ß-hairpin is a structural motif accessible to amyloidogenic proteins in their monomeric and oligomeric states. Here, to investigate implications of ß-hairpins in amyloid formation, potential ß-hairpin-forming amyloidogenic segments in the human proteome were predicted based on sequence similarity with ß-hairpins previously observed in Aß, α-synuclein, and islet amyloid polypeptide, amyloidogenic proteins associated with AD, PD, and T2D, respectively. These three ß-hairpins, established upon binding to the engineered binding protein ß-wrapin AS10, are characterized by proximity of two sequence segments rich in hydrophobic and aromatic amino acids, with high ß-aggregation scores according to the TANGO algorithm. Using these criteria, 2505 potential ß-hairpin-forming amyloidogenic segments in 2098 human proteins were identified. Characterization of a test set of eight protein segments showed that seven assembled into Thioflavin T-positive aggregates and four formed ß-hairpins in complex with AS10 according to NMR. One of those is a segment of prostatic acid phosphatase (PAP) comprising amino acids 185-208. PAP is naturally cleaved into fragments, including PAP(248-286) which forms functional amyloid in semen. We find that PAP(185-208) strongly decreases the protein concentrations required for fibril formation of PAP(248-286) and of another semen amyloid peptide, SEM1(86-107), indicating that it promotes nucleation of semen amyloids. In conclusion, ß-hairpin-forming amyloidogenic protein segments could be identified in the human proteome with potential roles in functional or disease-related amyloid formation.

10.
Cell Rep ; 43(7): 114448, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003740

RESUMO

Noonan syndrome patients harboring causative variants in LZTR1 are particularly at risk to develop severe and early-onset hypertrophic cardiomyopathy. In this study, we investigate the mechanistic consequences of a homozygous variant LZTR1L580P by using patient-specific and CRISPR-Cas9-corrected induced pluripotent stem cell (iPSC) cardiomyocytes. Molecular, cellular, and functional phenotyping in combination with in silico prediction identify an LZTR1L580P-specific disease mechanism provoking cardiac hypertrophy. The variant is predicted to alter the binding affinity of the dimerization domains facilitating the formation of linear LZTR1 polymers. LZTR1 complex dysfunction results in the accumulation of RAS GTPases, thereby provoking global pathological changes of the proteomic landscape ultimately leading to cellular hypertrophy. Furthermore, our data show that cardiomyocyte-specific MRAS degradation is mediated by LZTR1 via non-proteasomal pathways, whereas RIT1 degradation is mediated by both LZTR1-dependent and LZTR1-independent pathways. Uni- or biallelic genetic correction of the LZTR1L580P missense variant rescues the molecular and cellular disease phenotype, providing proof of concept for CRISPR-based therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Síndrome de Noonan , Proteínas ras , Humanos , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Síndrome de Noonan/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas ras/metabolismo , Proteínas ras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/metabolismo , Polimerização , Sistemas CRISPR-Cas/genética , Proteólise , Mutação de Sentido Incorreto , Multimerização Proteica , Genes Recessivos , Fenótipo
11.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666085

RESUMO

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA