Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.246
Filtrar
1.
Nat Immunol ; 18(6): 683-693, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28394372

RESUMO

RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.


Assuntos
Linfócitos B/imunologia , Adesão Celular/genética , Movimento Celular/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Animais , Fator 1 de Resposta a Butirato , Adesão Celular/imunologia , Movimento Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fatores Reguladores de Interferon/genética , Fatores de Transcrição Kruppel-Like/genética , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Proteínas Nucleares/imunologia , Fenótipo , Proteínas de Ligação a RNA/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais
2.
Nature ; 605(7910): 497-502, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545679

RESUMO

Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature1. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes2. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load3,4. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.


Assuntos
Mutação em Linhagem Germinativa , Mamíferos , Locos de Características Quantitativas , Alelos , Animais , Variação Genética , Haplótipos/genética , Masculino , Mamíferos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Mutação , Locos de Características Quantitativas/genética
3.
Genome Res ; 34(1): 145-159, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38290977

RESUMO

Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Filogenia , Genótipo , Camundongos Endogâmicos , Fenótipo , Mutação , Variação Genética
4.
Cell ; 150(6): 1287-99, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22939713

RESUMO

Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.


Assuntos
Modelos Animais de Doenças , Doenças Metabólicas/genética , Camundongos/genética , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Animais , Cruzamentos Genéticos , Feminino , Homeostase , Humanos , Hipofosfatasia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Polimorfismo Genético , Locos de Características Quantitativas , Padrões de Referência , Vitamina B 6/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(34): e2315009121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133860

RESUMO

The enzyme UDP-glucose: glycoprotein glucosyltransferase (UGGT) is the gatekeeper of protein folding within the endoplasmic reticulum (ER). One-third of the human proteome traverses the ER where folding and maturation are facilitated by a complex protein homeostasis network. Both glycan modifications and disulfide bonds are of key importance in the maturation of these ER proteins. The actions of UGGT are intimately linked to the glycan code for folding and maturation of secretory proteins in the ER. UGGT selectively glucosylates the N-linked glycan of misfolded proteins so that they can reenter the lectin-folding chaperone cycle and be retained within the ER for further attempts at folding. An intriguing aspect of UGGT function is its interaction with its poorly understood cochaperone, the 15 kDa selenoprotein known as SELENOF or SEP15. This small protein contains a rare selenocysteine residue proposed to act as an oxidoreductase toward UGGT substrates. AlphaFold2 predictions of the UGGT1/SEP15 complex provide insight into this complex at a structural level. The predicted UGGT1/SEP15 interaction interface was validated by mutagenesis and coimmunoprecipitation experiments. These results serve as a springboard for models of the integrated action of UGGT1 and SEP15.


Assuntos
Retículo Endoplasmático , Glucosiltransferases , Dobramento de Proteína , Selenoproteínas , Selenoproteínas/metabolismo , Selenoproteínas/genética , Retículo Endoplasmático/metabolismo , Humanos , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Ligação Proteica
6.
EMBO J ; 41(24): e113003, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377534

RESUMO

Maturation of membrane proteins is complicated by the need to fold in three distinct environments. While much is known about folding in the two aqueous milieus constituted by cytoplasm and ER lumen, our knowledge of the folding, arrangement, and quality control of transmembrane regions within the lipid bilayer, and its facilitation by molecular chaperones, is limited. New work by Bloemeke et al now reveals an expanded role of the ER chaperone calnexin acting within the lipid bilayer in a carbohydrate-independent manner.


Assuntos
Bicamadas Lipídicas , Paladar , Calnexina/metabolismo , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Carboidratos , Proteínas de Ligação ao Cálcio/metabolismo
7.
Genome Res ; 33(5): 689-702, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127331

RESUMO

Short tandem repeats (STRs) are a class of rapidly mutating genetic elements typically characterized by repeated units of 1-6 bp. We leveraged whole-genome sequencing data for 152 recombinant inbred (RI) strains from the BXD family of mice to map loci that modulate genome-wide patterns of new mutations arising during parent-to-offspring transmission at STRs. We defined quantitative phenotypes describing the numbers and types of germline STR mutations in each strain and performed quantitative trait locus (QTL) analyses for each of these phenotypes. We identified a locus on Chromosome 13 at which strains inheriting the C57BL/6J (B) haplotype have a higher rate of STR expansions than those inheriting the DBA/2J (D) haplotype. The strongest candidate gene in this locus is Msh3, a known modifier of STR stability in cancer and at pathogenic repeat expansions in mice and humans, as well as a current drug target against Huntington's disease. The D haplotype at this locus harbors a cluster of variants near the 5' end of Msh3, including multiple missense variants near the DNA mismatch recognition domain. In contrast, the B haplotype contains a unique retrotransposon insertion. The rate of expansion covaries positively with Msh3 expression-with higher expression from the B haplotype. Finally, detailed analysis of mutation patterns showed that strains carrying the B allele have higher expansion rates, but slightly lower overall total mutation rates, compared with those with the D allele, particularly at tetranucleotide repeats. Our results suggest an important role for inherited variants in Msh3 in modulating genome-wide patterns of germline mutations at STRs.


Assuntos
Repetições de Microssatélites , Locos de Características Quantitativas , Animais , Camundongos , Haplótipos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
8.
Proc Natl Acad Sci U S A ; 120(17): e2218617120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068254

RESUMO

We have developed workflows to align 3D magnetic resonance histology (MRH) of the mouse brain with light sheet microscopy (LSM) and 3D delineations of the same specimen. We start with MRH of the brain in the skull with gradient echo and diffusion tensor imaging (DTI) at 15 µm isotropic resolution which is ~ 1,000 times higher than that of most preclinical MRI. Connectomes are generated with superresolution tract density images of ~5 µm. Brains are cleared, stained for selected proteins, and imaged by LSM at 1.8 µm/pixel. LSM data are registered into the reference MRH space with labels derived from the ABA common coordinate framework. The result is a high-dimensional integrated volume with registration (HiDiver) with alignment precision better than 50 µm. Throughput is sufficiently high that HiDiver is being used in quantitative studies of the impact of gene variants and aging on mouse brain cytoarchitecture and connectomics.


Assuntos
Imagem de Tensor de Difusão , Microscopia , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos
9.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314842

RESUMO

mRNA localization and transport are integral in regulating gene expression. In Caenorhabditis elegans embryos, the maternally inherited mRNA erm-1 (Ezrin/Radixin/Moesin) becomes concentrated in anterior blastomeres. erm-1 mRNA localizes within those blastomeres to the plasma membrane where the essential ERM-1 protein, a membrane-actin linker, is also found. We demonstrate that the localization of erm-1 mRNA to the plasma membrane is translation dependent and requires its encoded N-terminal, membrane-binding (FERM) domain. By perturbing translation through multiple methods, we found that erm-1 mRNA localization at the plasma membrane persisted only if the nascent peptide remained in complex with the translating mRNA. Indeed, re-coding the erm-1 mRNA coding sequence while preserving the encoded amino acid sequence did not disrupt erm-1 mRNA localization, corroborating that the information directing mRNA localization resides within its membrane-binding protein domain. A single-molecule inexpensive fluorescence in situ hybridization screen of 17 genes encoding similar membrane-binding domains identified three plasma membrane-localized mRNAs in the early embryo. Ten additional transcripts showed potential membrane localization later in development. These findings point to a translation-dependent pathway for localization of mRNAs encoding membrane-associated proteins.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização in Situ Fluorescente , Membrana Celular/metabolismo , Actinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
10.
Cell ; 142(1): 9-14, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603007

RESUMO

Molecular and cellular networks implicated in aging depend on a multitude of proteins that collectively mount adaptive and contingent metabolic responses to environmental challenges. Here, we discuss the intimate links between metabolic regulation and longevity and outline new approaches for analyzing and manipulating such links to promote human health span.


Assuntos
Envelhecimento/metabolismo , Aminoácidos Essenciais/metabolismo , Longevidade , Redes e Vias Metabólicas , Metionina/metabolismo , Envelhecimento/genética , Animais , Humanos
11.
PLoS Genet ; 18(6): e1010230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709096

RESUMO

Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear. Here, we used high resolution NG Capture-C to map the cis-regulatory interaction landscape of the key neuro-developmental Paupar-Pax6 lncRNA-mRNA locus. The results define chromatin architecture changes associated with high Paupar-Pax6 expression in neurons and identify both promoter selective as well as shared cis-regulatory-promoter interactions involved in regulating Paupar-Pax6 co-expression. We discovered that the TCF7L2 transcription factor, a regulator of chromatin architecture and major effector of the Wnt signalling pathway, binds to a subset of these candidate cis-regulatory elements to coordinate Paupar and Pax6 co-expression. We describe distinct roles for Paupar in Pax6 expression control and show that the Paupar DNA locus contains a TCF7L2 bound transcriptional silencer whilst the Paupar transcript can act as an activator of Pax6. Our work provides important insights into the chromatin interactions, signalling pathways and transcription factors controlling co-expression of adjacent lncRNAs and protein coding genes in the brain.


Assuntos
RNA Longo não Codificante , Cromatina/genética , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 119(43): e2202992119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251991

RESUMO

N-glycosylation is a common posttranslational modification of secreted proteins in eukaryotes. This modification targets asparagine residues within the consensus sequence, N-X-S/T. While this sequence is required for glycosylation, the initial transfer of a high-mannose glycan by oligosaccharyl transferases A or B (OST-A or OST-B) can lead to incomplete occupancy at a given site. Factors that determine the extent of transfer are not well understood, and understanding them may provide insight into the function of these important enzymes. Here, we use mass spectrometry (MS) to simultaneously measure relative occupancies for three N-glycosylation sites on the N-terminal IgV domain of the recombinant glycoprotein, hCEACAM1. We demonstrate that addition is primarily by the OST-B enzyme and propose a kinetic model of OST-B N-glycosylation. Fitting the kinetic model to the MS data yields distinct rates for glycan addition at most sites and suggests a largely stochastic initial order of glycan addition. The model also suggests that glycosylation at one site influences the efficiency of subsequent modifications at the other sites, and glycosylation at the central or N-terminal site leads to dead-end products that seldom lead to full glycosylation of all three sites. Only one path of progressive glycosylation, one initiated by glycosylation at the C-terminal site, can efficiently lead to full occupancy for all three sites. Thus, the hCEACAM1 domain provides an effective model system to study site-specific recognition of glycosylation sequons by OST-B and suggests that the order and efficiency of posttranslational glycosylation is influenced by steric cross-talk between adjoining acceptor sites.


Assuntos
Asparagina , Hexosiltransferases , Asparagina/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Manose , Polissacarídeos , Transferases/metabolismo
13.
PLoS Genet ; 18(4): e1009638, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377872

RESUMO

Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.


Assuntos
Glucose , Neurogênese , Animais , Humanos , Ratos , Glucose/genética , Glucose/metabolismo , Hipocampo/metabolismo , Neurogênese/genética , Fenótipo , Ratos Endogâmicos BN , Ratos Endogâmicos SHR
14.
Mol Pharm ; 21(2): 564-580, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215042

RESUMO

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.


Assuntos
Asma , Inibidores de Janus Quinases , Ratos , Animais , Pós/química , Congelamento , Lactose , Administração por Inalação , Asma/tratamento farmacológico , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios
15.
Pharm Res ; 41(3): 501-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326530

RESUMO

PURPOSE: This study aimed to test the feasibility of using Small Angle X-ray Scattering (SAXS) coupled with Density from Solution Scattering (DENSS) algorithm to characterize the internal architecture of messenger RNA-containing lipid nanoparticles (mRNA-LNPs). METHODS: The DENSS algorithm was employed to construct a three-dimensional model of average individual mRNA-LNP. The reconstructed models were cross validated with cryogenic transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) to assess size, morphology, and internal structure. RESULTS: Cryo-TEM and DLS complemented SAXS, revealed a core-shell mRNA-LNP structure with electron-rich mRNA-rich region at the core, surrounded by lipids. The reconstructed model, utilizing the DENSS algorithm, effectively distinguishes mRNA and lipids via electron density mapping. Notably, DENSS accurately models the morphology of the mRNA-LNPs as an ellipsoidal shape with a "bleb" architecture or a two-compartment structure with contrasting electron densities, corresponding to mRNA-filled and empty lipid compartments, respectively. Finally, subtle changes in the LNP structure after three freeze-thaw cycles were detected by SAXS, demonstrating an increase in radius of gyration (Rg) associated with mRNA leakage. CONCLUSION: Analyzing SAXS profiles based on DENSS algorithm to yield a reconstructed electron density based three-dimensional model can be a useful physicochemical characterization method in the toolbox to study mRNA-LNPs and facilitate their development.


Assuntos
Elétrons , Lipossomos , Nanopartículas , Raios X , Espalhamento a Baixo Ângulo , RNA Mensageiro/química , Difração de Raios X , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/química
16.
Environ Sci Technol ; 58(28): 12409-12419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953529

RESUMO

Waste-to-energy systems can provide a functional demonstration of the economic and environmental benefits of circularity, innovation, and reimagining existing systems. This study offers a robust quantification of the greenhouse gas (GHG) emission reduction potential of the adoption of anaerobic digestion (AD) technology on applicable large-scale dairy farms in the contiguous United States. GHG reduction estimates were developed through a robust life cycle modeling framework paired with sensitivity and uncertainty analyses. Twenty dairy configurations were modeled to capture important differences in housing and manure management practices, applicable AD technologies, regional climates, storage cleanout schedules, and methods of land application. Monte Carlo results for the 90% confidence interval illustrate the potential for AD adoption to reduce GHG emissions from the large-scale dairy industry by 2.45-3.52 MMT of CO2-eq per year considering biogas use only in renewable natural gas programs and as much as 4.53-6.46 MMT of CO2-eq per year with combined heat and power as an additional biogas use case. At the farm level, AD technology may reduce GHG emissions from manure management systems by 58.1-79.8% depending on the region. Discussion focuses on regional differences in GHG emissions from manure management strategies and the challenges and opportunities surrounding AD adoption.


Assuntos
Indústria de Laticínios , Gases de Efeito Estufa , Anaerobiose , Estados Unidos , Esterco , Fazendas , Efeito Estufa , Animais
17.
Environ Res ; 258: 119454, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906450

RESUMO

Urbanization of estuaries drastically changed existing shorelines and bathymetric contours, in turn modifying habitat for marine foundational species that host critical biodiversity. And yet we lack approaches to characterize a significant fraction of the biota that inhabit these ecosystems on time scales that align with rates of urbanization. Environmental DNA (or eDNA) metabarcoding that combines multiple assays targeting a broad range of taxonomic groups can provide a solution, but we need to determine whether the biological communities it detects ally with different habitats in these changing aquatic environments. In this study, we tested whether tree of life metabarcoding (ToL-metabarcoding) data extracted from filtered seawater samples correlated with four known geomorphic habitat zones across a heavily urbanized estuary (Sydney Harbour, Australia). Using this method, we substantially expanded our knowledge on the composition and spatial distribution of marine biodiversity across the tree of life in Sydney Harbour, particularly for organisms where existing records are sparse. Excluding terrestrial DNA inputs, we identified significant effects of both distance from the mouth of Sydney Harbour and geomorphic zone on biological community structure in the ToL-metabarcoding dataset (entire community), as well as in each of the taxonomic subgroups that we considered (fish, macroinvertebrates, algae and aquatic plants, bacteria). This effect appeared to be driven by taxa as a collective versus a few individual taxa, with each taxon explaining no more than 0.62% of the variation between geomorphic zones. Similarly, taxonomic richness was significantly higher within geomorphic zones with large sample sizes, but also decreased by 1% with each additional kilometer from the estuary mouth, a result consistent with a reduction in tidal inputs and available habitat in upper catchments. Based on these results, we suggest that ToL-metabarcoding can be used to benchmark biological monitoring in other urbanized estuaries globally, and in Sydney Harbour at future time points based on detection of bioindicators across the tree of life. We also suggest that robust biotic snapshots can be archived following extensive curation of taxonomic assignments that incorporates ecological affinities, supported by records from relevant and regional biodiversity repositories.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Estuários , Urbanização , Código de Barras de DNA Taxonômico/métodos , Animais , Monitoramento Ambiental/métodos , DNA Ambiental/análise , Austrália , Organismos Aquáticos/classificação , Invertebrados/classificação , Benchmarking , Água do Mar
18.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
19.
J Biol Chem ; 298(12): 102565, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208776

RESUMO

α-synuclein (αS) is the key component of synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. αS was first linked to PD through the identification of point mutations in the SNCA gene, causing single amino acid substitutions within αS and familial autosomal dominant forms of PD that profoundly accelerated disease onset by up to several decades. At least eight single-point mutations linked to familial PD (A30G/P, E46K, H50Q, G51D, and A53T/E/V) are located in proximity of the region preceding the non-ß amyloid component (preNAC) region, strongly implicating its pathogenic role in αS-mediated cytotoxicity. Furthermore, lipids are known to be important for native αS function, where they play a key role in the regulation of synaptic vesicle docking to presynaptic membranes and dopamine transmission. However, the role of lipids in the function of mutant αS is unclear. Here, we studied αS aggregation properties of WT αS and five of the most predominant single-point missense mutants associated with early onset PD in the presence of anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine lipid vesicles. Our results highlight significant differences between aggregation rates, the number of aggregates produced, and overall fibril morphologies of WT αS and the A30P, E46K, H50Q, G51D, and A53T missense mutants in the presence of lipid vesicles. These findings have important implications regarding the interplay between the lipids required for αS function and the individual point mutations known to accelerate PD and related diseases.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Expressão Gênica , Lipídeos , Doença de Parkinson/metabolismo , Mutação Puntual , Mutação de Sentido Incorreto
20.
Trends Genet ; 36(8): 549-562, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482413

RESUMO

Genetically diverse inbred strains are frequently used in quantitative trait mapping to identify sequence variants underlying trait variation. Poor locus resolution and high genetic complexity impede variant discovery. As a solution, we explore reduced complexity crosses (RCCs) between phenotypically divergent, yet genetically similar, rodent substrains. RCCs accelerate functional variant discovery via decreasing the number of segregating variants by orders of magnitude. The simplified genetic architecture of RCCs often permit immediate identification of causal variants or rapid fine-mapping of broad loci to smaller intervals. Whole-genome sequences of substrains make RCCs possible by supporting the development of array- and targeted sequencing-based genotyping platforms, coupled with rapid genome editing for variant validation. In summary, RCCs enhance discovery-based genetics of complex traits.


Assuntos
Cromossomos de Mamíferos/genética , Cruzamentos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Genótipo , Fenótipo , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA