Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Biol Chem ; 297(5): 101347, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34715130

RESUMO

The cellular specificity, potency, and modular nature of bacterial protein toxins enable their application for targeted cytosolic delivery of therapeutic cargo. Efficient endosomal escape is a critical step in the design of bacterial toxin-inspired drug delivery (BTIDD) vehicles to avoid lysosomal degradation and promote optimal cargo delivery. The cytotoxic necrotizing factor (CNF) family of modular toxins represents a useful model for investigating cargo-delivery mechanisms due to the availability of many homologs with high sequence identity, their flexibility in swapping domains, and their differential activity profiles. Previously, we found that CNFy is more sensitive to endosomal acidification inhibitors than CNF1 and CNF2. Here, we report that CNF3 is even less sensitive than CNF1/2. We identified two amino acid residues within the putative translocation domain (E374 and E412 in CNFy, Q373 and S411 in CNF3) that differentiate between these two toxins. Swapping these corresponding residues in each toxin changed the sensitivity to endosomal acidification and efficiency of cargo-delivery to be more similar to the other toxin. Results suggested that trafficking to the more acidic late endosome is required for cargo delivery by CNFy but not CNF3. This model was supported by results from toxin treatment of cells in the presence of NH4Cl, which blocks endosomal acidification, and of small-molecule inhibitors EGA, which blocks trafficking to late endosomes, and ABMA, which blocks endosomal escape and trafficking to the lysosomal degradative pathway. These findings suggest that it is possible to fine-tune endosomal escape and cytosolic cargo delivery efficiency in designing BTIDD platforms.


Assuntos
Toxinas Bacterianas , Endossomos/metabolismo , Proteínas de Escherichia coli , Lisossomos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Endossomos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Lisossomos/genética , Domínios Proteicos , Transporte Proteico
2.
J Biol Chem ; 293(10): 3860-3870, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29371399

RESUMO

Modular AB-type bacterial protein toxins target mammalian host cells with high specificity and deliver their toxic cargo into the cytosol. Hence, these toxins are being explored as agents for targeted cytosolic delivery in biomedical and research applications. The cytotoxic necrotizing factor (CNF) family is unique among these toxins in that their homologous sequences are found in a wide array of bacteria, and their activity domains are packaged in various delivery systems. Here, to study how CNF cargo and delivery modules can be assembled for efficient cytosolic delivery, we generated chimeric toxins by swapping functional domains among CNF1, CNF2, CNF3, and CNFy. Chimeras with a CNFy delivery vehicle were more stably expressed, but were less efficient at cargo delivery into HEK293-T cells. We also found that CNFy cargo is the most universally compatible and that CNF3 delivery vehicle is the most flexible and efficient at delivering cargo. These findings suggest that domains within proteins can be swapped and accommodate each other for efficient function and that an individual domain could be engineered for compatibility with multiple partner domains. We anticipate that our insights could help inform chemical biology approaches to develop toxin-based cargo-delivery platforms for cytosolic cargo delivery of therapeutics or molecular probes into mammalian cells.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteínas Recombinantes de Fusão/metabolismo , Absorção Fisiológica , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Reporter , Células HEK293 , Histidina/genética , Histidina/metabolismo , Humanos , Cinética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Yersinia pseudotuberculosis/metabolismo
3.
Am J Phys Anthropol ; 169(3): 575-585, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31025322

RESUMO

OBJECTIVES: Environmental and ecological factors, such as geographic range, anthropogenic pressure, group identity, and feeding behavior are known to influence the gastrointestinal microbiomes of great apes. However, the influence of individual host traits such as age and sex, given specific dietary and social constraints, has been less studied. The objective of this investigation was to determine the associations between an individual's age and sex on the diversity and composition of the gut microbiome in wild western lowland gorillas. MATERIALS AND METHODS: Publicly available 16S rRNA data generated from fecal samples of different groups of Gorilla gorilla gorilla in the Central African Republic were downloaded and bioinformatically processed. The groups analyzed included habituated, partially habituated and unhabituated gorillas, sampled during low fruit (dry, n = 28) and high fruit (wet, n = 82) seasons. Microbial community analyses (alpha and beta diversity and analyses of discriminant taxa), in tandem with network-wide approaches, were used to (a) mine for specific age and sex based differences in gut bacterial community composition and to (b) asses for gut community modularity and bacterial taxa with potential functional roles, in the context of seasonal food variation, and social group affiliation. RESULTS: Both age and sex significantly influenced gut microbiome diversity and composition in wild western lowland gorillas. However, the largest differences were observed between infants and adults in habituated groups and between adults and immature gorillas within all groups, and across dry and wet seasons. Specifically, although adults always showed greater bacterial richness than infants and immature gorillas, network-wide analyses showed higher microbial community complexity and modularity in the infant gorilla gut. Sex-based microbiome differences were not evident among adults, being only detected among immature gorillas. CONCLUSIONS: The results presented point to a dynamic gut microbiome in Gorilla spp., associated with ontogeny and individual development. Of note, the gut microbiomes of breastfeeding infants seemed to reflect early exposure to complex, herbaceous vegetation. Whether increased compositional complexity of the infant gorilla gut microbiome is an adaptive response to an energy-limited diet and an underdeveloped gut needs to be further tested. Overall, age and sex based gut microbiome differences, as shown here, maybe mainly attributed to access to specific feeding sources, and social interactions between individuals within groups.


Assuntos
Microbioma Gastrointestinal/fisiologia , Gorilla gorilla/microbiologia , Gorilla gorilla/fisiologia , Envelhecimento/fisiologia , Animais , Antropologia Física , DNA Bacteriano/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Masculino , RNA Ribossômico 16S/genética , Fatores Sexuais
4.
Infect Immun ; 86(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29784857

RESUMO

The zoonotic pathogen Pasteurella multocida produces a 146-kDa modular toxin (PMT) that enters host cells and manipulates intracellular signaling through action on its Gα protein targets. The N terminus of PMT (PMT-N) mediates cellular uptake through receptor-mediated endocytosis, followed by the delivery of the C-terminal catalytic domain from acidic endosomes into the cytosol. The putative native cargo of PMT consists of a 710-residue polypeptide with three distinct modular subdomains (C1-C2-C3), where C1 contains a membrane localization domain (MLD), C2 has an as-yet-undefined function, and C3 catalyzes the deamidation of a specific active-site glutamine residue in Gα protein targets. However, whether the three cargo subdomains are delivered intact or undergo further proteolytic processing during or after translocation from the late endosome is unclear. Here, we demonstrate that PMT-N mediates the delivery of its native C-terminal cargo as a single polypeptide, corresponding to C1-C2-C3, including the MLD, with no evidence of cleavage between subdomains. We show that PMT-N also delivers nonnative green fluorescent protein (GFP) cargo into the cytosol, further supporting that the receptor-binding and translocation functions reside within PMT-N. Our findings further show that PMT-N can deliver C1-C2 alone but that the presence of C1-C2 is important for the cytosolic delivery of the catalytic C3 subdomain by PMT-N. In addition, we further refine the minimum C3 domain required for intracellular activity as comprising residues 1105 to 1278. These findings reinforce that PMT-N serves as the cytosolic delivery vehicle for C-terminal cargo and demonstrate that its native cargo is delivered intact as C1-C2-C3.


Assuntos
Proteínas de Bactérias/farmacocinética , Toxinas Bacterianas/farmacocinética , Endocitose/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Pasteurella multocida/química , Pasteurella multocida/patogenicidade , Transporte Proteico/fisiologia , Animais , Camundongos , Transdução de Sinais/fisiologia
5.
Microbiology (Reading) ; 164(1): 40-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205130

RESUMO

Exposure to stressors can negatively impact the mammalian gastrointestinal microbiome (GIM). Here, we used 454 pyrosequencing of 16S rRNA bacterial gene amplicons to evaluate the impact of physiological stress, as evidenced by faecal glucocorticoid metabolites (FGCM; ng/g), on the GIM composition of free-ranging western lowland gorillas (Gorilla gorilla gorilla). Although we found no relationship between GIM alpha diversity (H) and FGCM levels, we observed a significant relationship between the relative abundances of particular bacterial taxa and FGCM levels. Specifically, members of the family Anaerolineaceae (ρ=0.4, FDR q=0.01), genus Clostridium cluster XIVb (ρ=0.35, FDR q=0.02) and genus Oscillibacter (ρ=0.35, FDR q=0.02) were positively correlated with FGCM levels. Thus, while exposure to stressors appears to be associated with minor changes in the gorilla GIM, the consequences of these changes are unknown. Our results may have implications for conservation biology as well as for our overall understanding of factors influencing the non-human primate GIM.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Gorilla gorilla/microbiologia , Estresse Fisiológico , Animais , Bactérias/genética , DNA Bacteriano , Fezes/química , Fezes/microbiologia , Glucocorticoides/análise , Gorilla gorilla/fisiologia , Modelos Estatísticos , RNA Ribossômico 16S , Análise de Sequência de DNA
6.
Microb Ecol ; 72(4): 943-954, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26984253

RESUMO

The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.


Assuntos
Antibacterianos/farmacologia , Doenças dos Símios Antropoides/tratamento farmacológico , Cefalosporinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Gorilla gorilla/microbiologia , Animais , Bacteroidetes/crescimento & desenvolvimento , República Centro-Africana , Fezes/microbiologia , Firmicutes/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Ruminococcus/crescimento & desenvolvimento
7.
Microb Ecol ; 69(2): 434-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524570

RESUMO

For most mammals, including nonhuman primates, diet composition varies temporally in response to differences in food availability. Because diet influences gut microbiota composition, it is likely that the gut microbiota of wild mammals varies in response to seasonal changes in feeding patterns. Such variation may affect host digestive efficiency and, ultimately, host nutrition. In this study, we investigate the temporal variation in diet and gut microbiota composition and function in two groups (N = 13 individuals) of wild Mexican black howler monkeys (Alouatta pigra) over a 10-month period in Palenque National Park, Mexico. Temporal changes in the relative abundances of individual bacterial taxa were strongly correlated with changes in host diet. For example, the relative abundance of Ruminococcaceae was highest during periods when energy intake was lowest, and the relative abundance of Butyricicoccus was highest when young leaves and unripe fruit accounted for 68 % of the diet. Additionally, the howlers exhibited increased microbial production of energy during periods of reduced energy intake from food sources. Because we observed few changes in howler activity and ranging patterns during the course of our study, we propose that shifts in the composition and activity of the gut microbiota provided additional energy and nutrients to compensate for changes in diet. Energy and nutrient production by the gut microbiota appears to provide an effective buffer against seasonal fluctuations in energy and nutrient intake for these primates and is likely to have a similar function in other mammal species.


Assuntos
Alouatta/microbiologia , Dieta/veterinária , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Comportamento Alimentar , Feminino , Frutas , Masculino , México , Folhas de Planta , Estações do Ano
8.
Clin Microbiol Rev ; 26(3): 631-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824375

RESUMO

In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.


Assuntos
Infecções por Pasteurella/microbiologia , Pasteurella multocida/fisiologia , Zoonoses/microbiologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Virulência
9.
J Biol Chem ; 288(4): 2805-15, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223576

RESUMO

Pasteurella multocida toxin (PMT) is a potent mitogen known to activate several signaling pathways via deamidation of a conserved glutamine residue in the α subunit of heterotrimeric G-proteins. However, the detailed mechanism behind mitogenic properties of PMT is unknown. Herein, we show that PMT induces protein synthesis, cell migration, and proliferation in serum-starved Swiss 3T3 cells. Concomitantly PMT induces phosphorylation of ribosomal S6 kinase (S6K1) and its substrate, ribosomal S6 protein (rpS6), in quiescent 3T3 cells. The extent of the phosphorylation is time and PMT concentration dependent, and is inhibited by rapamycin and Torin1, the two specific inhibitors of the mammalian target of rapamycin complex 1 (mTORC1). Interestingly, PMT-mediated mTOR signaling activation was observed in MEF WT but not in Gα(q/11) knock-out cells. These observations are consistent with the data indicating that PMT-induced mTORC1 activation proceeds via the deamidation of Gα(q/11), which leads to the activation of PLCß to generate diacylglycerol and inositol trisphosphate, two known activators of the PKC pathway. Exogenously added diacylglycerol or phorbol 12-myristate 13-acetate, known activators of PKC, leads to rpS6 phosphorylation in a rapamycin-dependent manner. Furthermore, PMT-induced rpS6 phosphorylation is inhibited by PKC inhibitor, Gö6976. Although PMT induces epidermal growth factor receptor activation, it exerts no effect on PMT-induced rpS6 phosphorylation. Together, our findings reveal for the first time that PMT activates mTORC1 through the Gα(q/11)/PLCß/PKC pathway. The fact that PMT-induced protein synthesis and cell migration is partially inhibited by rapamycin indicates that these processes are in part mediated by the mTORC1 pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Células 3T3 , Trifosfato de Adenosina/química , Animais , Carbazóis/farmacologia , Movimento Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Metionina/química , Camundongos , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Fosfolipase C beta/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Acetato de Tetradecanoilforbol/química , Cicatrização
10.
J Biol Chem ; 288(11): 7492-7505, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23306199

RESUMO

The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli/metabolismo , Haemophilus ducreyi/metabolismo , Animais , Biotinilação , Células CHO , Células CACO-2 , Ciclo Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Cricetinae , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Transporte Proteico , Proteínas Recombinantes/química
11.
FASEB J ; 27(2): 832-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23150526

RESUMO

Pasteurella multocida is the causative agent of a number of epizootic and zoonotic diseases. Its major virulence factor associated with atrophic rhinitis in animals and dermonecrosis in bite wounds is P. multocida toxin (PMT). PMT stimulates signal transduction pathways downstream of heterotrimeric G proteins, leading to effects such as mitogenicity, blockade of apoptosis, or inhibition of osteoblast differentiation. On the basis of Gα(i2), it was demonstrated that the toxin deamidates an essential glutamine residue of the Gα(i2) subunit, leading to constitutive activation of the G protein. Here, we studied the specificity of PMT for its G-protein targets by mass spectrometric analyses and by utilizing a monoclonal antibody, which recognizes specifically G proteins deamidated by PMT. The studies revealed deamidation of 3 of 4 families of heterotrimeric G proteins (Gα(q/11), Gα(i1,2,3), and Gα(12/13) of mouse or human origin) by PMT but not by a catalytic inactive toxin mutant. With the use of G-protein fragments and chimeras of responsive or unresponsive G proteins, the structural basis for the discrimination of heterotrimeric G proteins was studied. Our results elucidate substrate specificity of PMT on the molecular level and provide evidence for the underlying structural reasons of substrate discrimination.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Pasteurella multocida/metabolismo , Pasteurella multocida/patogenicidade , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Sequência de Bases , Sítios de Ligação , Células Cultivadas , DNA Complementar/genética , Subunidades alfa de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Glutamina/química , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pasteurella multocida/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
12.
Am J Phys Anthropol ; 155(4): 652-64, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25252073

RESUMO

In all mammals, growth, development, pregnancy, and lactation increase nutritional demands. Although primate field studies tend to focus on shifts in activity and diet as mechanisms to compensate for these demands, differences in digestive efficiency also are likely to be important. Because the gut microbiota can impact host digestive efficiency, we examined differences in activity budget, diet, and the gut microbial community among adult male (N = 4), adult female (N = 4), and juvenile (N = 5) wild black howler monkeys (Alouatta pigra) across a ten-month period in Palenque National Park, Mexico to determine how adult females and juveniles compensate for increased nutritional demands. Results indicate that adult females and juveniles consumed more protein and energy than adult males. Adult males, adult females, and juveniles also possessed distinct gut microbial communities, unrelated to diet. Juveniles exhibited a gut microbiota characterized by bacteria from the phylum Firmicutes, such as Roseburia and Ruminococcus, and demonstrated high fecal volatile fatty acid content, suggesting increased microbial contributions to host energy balances. Adult females possessed a higher Firmicutes to Bacteroidetes ratio, also suggesting increased energy production, and their gut microbiota was characterized by Lactococcus, which has been associated with folate biosynthesis. On the basis of these patterns, it appears that the gut microbiota differentially contributes to howler monkey nutrition during reproduction and growth. Determining the nutritional and energetic importance of shifts in activity, diet, and the gut microbiota in other nonhuman primate taxa, as well as humans, will transform our understanding of these life history processes and the role of host-microbe relationships in primate evolution.


Assuntos
Alouatta/microbiologia , Alouatta/fisiologia , Comportamento Animal/fisiologia , Dieta , Ingestão de Energia/fisiologia , Trato Gastrointestinal/microbiologia , Ciclos de Atividade , Aminoácidos/análise , Animais , Carboidratos/análise , Ácidos Graxos/análise , Fezes/química , Fezes/microbiologia , Feminino , Masculino , Microbiota
13.
mBio ; : e0122124, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920360

RESUMO

The cytotoxic necrotizing factor (CNF) family of AB-type bacterial protein toxins catalyze two types of modification on their Rho GTPase substrates: deamidation and transglutamination. It has been established that E. coli CNF1 and its close homolog proteins catalyze primarily deamidation and Bordetella dermonecrotic toxin (DNT) catalyzes primarily transglutamination. The rapidly expanding microbial genome sequencing data have revealed that there are at least 13 full-length variants of CNF1 homologs. CNFx from E. coli strain GN02091 is the most distant from all other members of the CNF family with 50%-55% sequence identity at the protein level and 0.45-0.52 nucleotide substitutions per site at the DNA level. CNFx modifies RhoA, Rac1, and Cdc42, and like CNF1, activates downstream SRE-dependent mitogenic signaling pathways in human HEK293T cells, but at a 1,000-fold higher EC50 value. Unlike other previously characterized CNF toxins, CNFx modifies Rho proteins primarily through transglutamination, as evidenced by gel-shift assay and confirmed by MALDI mass spectral analysis, when coexpressed with Rho-protein substrates in E. coli BL21 cells or through direct treatment of HEK293T cells. A comparison of CNF1 and CNFx sequences identified two critical active-site residues corresponding to positions 832 and 862 in CNF1. Reciprocal site-specific mutations at these residues in each toxin revealed hierarchical rules that define the preference for deamidase versus a transglutaminase activity in CNFs. An additional unique Cys residue at the C-terminus of CNFx was also discovered to be critical for retarding cargo delivery.IMPORTANCECytotoxic necrotizing factor (CNF) toxins not only play important virulence roles in pathogenic E. coli and other bacterial pathogens, but CNF-like genes have also been found in an expanding number of genomes from clinical isolates. Harnessing the power of evolutionary relationships among the CNF toxins enabled the deciphering of the hierarchical active-site determinants that define whether they modify their Rho GTPase substrates through deamidation or transglutamination. With our finding that a distant CNF variant (CNFx) unlike other known CNFs predominantly transglutaminates its Rho GTPase substrates, the paradigm of "CNFs deamidate and DNTs transglutaminate" could finally be attributed to two critical amino acid residues within the active site other than the previously identified catalytic Cys-His dyad residues. The significance of our approach and research findings is that they can be applied to deciphering enzyme reaction determinants and substrate specificities for other bacterial proteins in the development of precision therapeutic strategies.

15.
Curr Top Microbiol Immunol ; 361: 93-111, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22552700

RESUMO

The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric G(q)-, G(i)- and G(12/13)-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Infecções por Pasteurella/metabolismo , Pasteurella multocida/genética , Transdução de Sinais , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno , Humanos , Infecções por Pasteurella/genética , Infecções por Pasteurella/microbiologia , Pasteurella multocida/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas , Transporte Proteico , Regulação para Cima
16.
Am J Phys Anthropol ; 152 Suppl 57: 119-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24166771

RESUMO

The primate body hosts trillions of microbes. Interactions between primate hosts and these microbes profoundly affect primate physiology, reproduction, health, survival, and ultimately, evolution. It is increasingly clear that primate health cannot be understood fully without knowledge of host-microbial interactions. Our goals here are to review what is known about microbiomes of the female reproductive tract and to explore several factors that influence variation within individuals, as well as within and between primate species. Much of our knowledge of microbial variation derives from studies of humans, and from microbes located in nonreproductive regions (e.g., the gut). We review work suggesting that the vaginal microbiota affects female health, fecundity, and pregnancy outcomes, demonstrating the selective potential for these agents. We explore the factors that correlate with microbial variation within species. Initial colonization by microbes depends on the manner of birth; most microbial variation is structured by estrogen levels that change with age (i.e., at puberty and menopause) and through the menstrual cycle. Microbial communities vary by location within the vagina and can depend on the sampling methods used (e.g., swab, lavage, or pap smear). Interindividual differences also exist, and while this variation is not completely understood, evidence points more to differences in estrogen levels, rather than differences in external physical environment. When comparing across species, reproductive-age humans show distinct microbial communities, generally dominated by Lactobacillus, unlike other primates. We develop evolutionary hypotheses to explain the marked differences in microbial communities. While much remains to be done to test these hypotheses, we argue that the ample variation in primate mating and reproductive behavior offers excellent opportunities to evaluate host-microbe coevolution and adaptation.


Assuntos
Microbiota , Primatas/microbiologia , Primatas/fisiologia , Vagina/microbiologia , Animais , Antropologia Física , Evolução Biológica , Doença , Feminino , Humanos
17.
Microbiol Spectr ; : e0455422, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916939

RESUMO

Pasteurella multocida infection can cause significant zoonotic respiratory problems in both humans and animals, but little is known about the mechanisms used by P. multocida to invade and cross the mammalian respiratory barrier. In this study, we investigated the influence of P. multocida infection on the dysfunction of the respiratory epithelial barrier. In vivo tests in mouse infection models demonstrated that P. multocida infection significantly increased epithelial permeability and increased the expression of vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in murine tracheae and lungs. In murine lung epithelial cell (MLE-12) models, P. multocida infection decreased the expression of tight junctions (ZO-1) and adherens junctions (ß-catenin and E-cadherin) proteins but induced the activation of hypoxia-inducible factor 1α (HIF-1α) and VEGFA signaling. When the expression of HIF-1α is suppressed, the induction of VEGFA and ZO-1 expression by P. multocida infection is decreased. We also found that intervention of HIF-1α and VEGFA signaling affected infection outcomes caused by respiratory bacteria in mouse models. Most importantly, we demonstrate that P. multocida infection increases the permeability of human respiratory epithelial cells and that this process is associated with the activation of HIF-1α and VEGFA signaling and likely contributes to the pathogenesis of P. multocida infection in humans. IMPORTANCE The mammalian respiratory epithelium forms the first line of defense against infections with P. multocida, an important zoonotic respiratory pathogen. In this study, we found that P. multocida infection increased respiratory epithelial permeability and promoted the induction of the HIF-1α-VEGFA axis in both mouse and murine cell models. Similar findings were also demonstrated in human respiratory epithelial cells. The results from this study provide important knowledge about the pathogenesis of P. multocida causing infections in both animals and humans.

18.
Proc Natl Acad Sci U S A ; 106(17): 7179-84, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19369209

RESUMO

Pasteurella multocida toxin is a major virulence factor of Pasteurella multocida, which causes pasteurellosis in men and animals and atrophic rhinitis in rabbits and pigs. The approximately 145 kDa protein toxin stimulates various signal transduction pathways by activating heterotrimeric G proteins of the Galpha(q), Galpha(i), and Galpha(12/13) families by using an as yet unknown mechanism. Here, we show that Pasteurella multocida toxin deamidates glutamine-205 of Galpha(i2) to glutamic acid. Therefore, the toxin inhibits the intrinsic GTPase activity of Galpha(i) and causes persistent activation of the G protein. A similar modification is also evident for Galpha(q), but not for the closely related Galpha(11), which is not a substrate of Pasteurella multocida toxin. Our data identify the alpha-subunits of heterotrimeric G proteins as the direct molecular target of Pasteurella multocida toxin and indicate that the toxin does not act like a protease, which was suggested from its thiol protease-like catalytic triad, but instead causes constitutive activation of G proteins by deamidase activity.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Desaminação , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
19.
Vaccine ; 40(27): 3771-3780, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35599036

RESUMO

Dermonecrotic toxin (DNT) is an important bacterial virulence factor produced by the zoonotic pathogens Bordetella bronchiseptica and Pasteurella multocida. This study aims to explore the possibility of expressing different fragments of P. multocida toxin (PMT) in the chromosome of attenuated B. bronchiseptica to generate single-component mucosal vaccine candidates. To achieve this, a 954-bp fragment (basepairs 301 âˆ¼ 1254) of the B. bronchiseptica aroA gene was replaced with an N-terminal, 930-bp fragment (basepairs 1-930; PMTN) or a C-terminal, 900-bp fragment (base pairs 2959 âˆ¼ 3858; PMTC) of the PMT encoding gene toxA. The resulting strains, denoted as Bb-PMTN or Bb-PMTC, expressed PMTN and PMTC, as evidenced by ELISA using polyclonal against full-length of PMT. Phenotypical analyses revealed that Bb-PMTN and Bb-PMTC grew much slower than wild type strains in tryptic soy broth. These strains also displayed significantly decreased 161-fold-virulence compared to the wildtype strains in mouse models. Intranasal immunization of Bb-PMTN and Bb-PMTC in mice induced high levels of antibodies against B. bronchiseptica and PMT, as well as IFN-γ and IL-10 in mouse sera, and most importantly, high titers of sIgA in mouse lungs. Vaccination with these two engineering strains provided 100% protection of mice against lethal challenge with B. bronchiseptica and 80%∼100% protection against lethal challenge with PMT, with Bb-PMTN exhibiting 1.25-fold greater immunogenic efficacy over Bb-PMTC. This study highlights the use of B. bronchiseptica attenuated strains as live mucosal vectors to deliver heterologous antigens.


Assuntos
Toxinas Bacterianas , Infecções por Bordetella , Bordetella bronchiseptica , Infecções por Pasteurella , Pasteurella multocida , Animais , Proteínas de Bactérias , Toxinas Bacterianas/genética , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/genética , Camundongos , Infecções por Pasteurella/prevenção & controle , Pasteurella multocida/genética , Vacinas Atenuadas
20.
Cell Microbiol ; 12(10): 1517-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20545942

RESUMO

Plasma membrane sphingomyelin (SM) binds the Helicobacter pylori vacuolating toxin (VacA) to the surface of epithelial cells. To evaluate the importance of SM for VacA cellular entry, we characterized toxin uptake and trafficking within cells enriched with synthetic variants of SM, whose intracellular trafficking properties are strictly dependent on the acyl chain lengths of their sphingolipid backbones. While toxin binding to the surface of cells was independent of acyl chain length, cells enriched with 12- or 18-carbon acyl chain variants of SM (e.g. C12-SM or C18-SM) were more sensitive to VacA, as indicated by toxin-induced cellular vacuolation, than those enriched with shorter 2- or 6-carbon variants (e.g. C2-SM or C6-SM). In C18-SM-enriched cells, VacA was taken into cells by a previously described Cdc42-dependent pinocytic mechanism, localized initially to GPI-enriched vesicles, and ultimately trafficked to Rab7/Lamp1 compartments. In contrast, within C2-SM-enriched cells, VacA was taken up at a slower rate by a Cdc42-independent mechanism and trafficked to Rab11 compartments. VacA-associated predominantly with detergent-resistant membranes (DRMs) in cells enriched with C18-SM, but predominantly with non-DRMs in C2-SM-enriched cells. These results suggest that SM is required for targeting VacA to membrane rafts important for subsequent Cdc42-dependent pinocytic cellular entry.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/fisiologia , Células Epiteliais/fisiologia , Helicobacter pylori/patogenicidade , Esfingomielinas/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Membrana Celular/química , Células Epiteliais/química , Humanos , Pinocitose , Transporte Proteico , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA