Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2311131120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844228

RESUMO

Many neurons in the central nervous system produce a single primary cilium that serves as a specialized signaling organelle. Several neuromodulatory G-protein-coupled receptors (GPCRs) localize to primary cilia in neurons, although it is not understood how GPCR signaling from the cilium impacts circuit function and behavior. We find that the vertebrate ancient long opsin A (VALopA), a Gi-coupled GPCR extraretinal opsin, targets to cilia of zebrafish spinal neurons. In the developing 1-d-old zebrafish, brief light activation of VALopA in neurons of the central pattern generator circuit for locomotion leads to sustained inhibition of coiling, the earliest form of locomotion. We find that a related extraretinal opsin, VALopB, is also Gi-coupled, but is not targeted to cilia. Light-induced activation of VALopB also suppresses coiling, but with faster kinetics. We identify the ciliary targeting domains of VALopA. Retargeting of both opsins shows that the locomotory response is prolonged and amplified when signaling occurs in the cilium. We propose that ciliary localization provides a mechanism for enhancing GPCR signaling in central neurons.


Assuntos
Receptores Acoplados a Proteínas G , Peixe-Zebra , Animais , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Opsinas , Opsinas de Bastonetes , Neurônios , Cílios/fisiologia
2.
Biomaterials ; 29(27): 3671-3682, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18565578

RESUMO

Dendritic cell vaccines, in which antigen-loaded dendritic cells (DCs) are injected directly into patients to trigger immune responses, are in development as a treatment for cancer and some infectious diseases. In this study, we tested the concept of delivering DCs in an injectable hydrogel matrix, with the aim of harboring dendritic cells for prolonged time periods at a defined site and trapping/concentrating factors secreted by DCs to establish an inflammatory milieu in situ. To achieve these goals, a self-gelling formulation of alginate was developed, obtained by mixing calcium-loaded alginate microspheres with soluble alginate solution and dendritic cells, a formulation that rapidly gelled in vivo. When injected subcutaneously in mice, these alginate 'vaccination nodes' containing activated DCs attracted both host dendritic cells and a large number of T cells to the injection sites over a week in vivo, while some of the inoculated DCs trafficked to the draining lymph nodes. Using an adoptive transfer model to track a defined population of T cells responding to immunization with antigen-loaded DCs, we show that DC/alginate immunization led to recruitment of activated antigen-specific T cells to the alginate matrix, in a manner dependent on the presence of the DCs. This gel/DC immunization system may thus be of interest for immunotherapy to direct the accumulation of immune cells at solid tumors or infection sites in the presence of supporting factors co-delivered by the hydrogel matrix.


Assuntos
Alginatos , Células Dendríticas , Imunoterapia , Vacinas/administração & dosagem , Animais , Citometria de Fluxo , Géis , Ácido Glucurônico , Ácidos Hexurônicos , Camundongos , Camundongos Endogâmicos C57BL
3.
Elife ; 5: e12387, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26836307

RESUMO

Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon.


Assuntos
Actinas/metabolismo , Axônios/fisiologia , Microtúbulos/metabolismo , Neuritos/fisiologia , Multimerização Proteica , Animais , Células Cultivadas , Hipocampo , Ratos Wistar
4.
Acta Biomater ; 5(4): 969-82, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19117820

RESUMO

Biocompatible polymer solutions that can crosslink in situ following injection to form stable hydrogels are of interest as depots for sustained delivery of therapeutic factors or cells, and as scaffolds for regenerative medicine. Here, injectable self-gelling alginate formulations obtained by mixing alginate microspheres (as calcium reservoirs) with soluble alginate solutions were characterized for potential use in immunotherapy. Rapid redistribution of calcium ions from microspheres into the surrounding alginate solution led to crosslinking and formation of stable hydrogels. The mechanical properties of the resulting gels correlated with the concentration of calcium-reservoir microspheres added to the solution. Soluble factors such as the cytokine interleukin-2 were readily incorporated into self-gelling alginate matrices by simply mixing them with the formulation prior to gelation. Using alginate microspheres as modular components, strategies for binding immunostimulatory CpG oligonucleotides onto the surface of microspheres were also demonstrated. When injected subcutaneously in the flanks of mice, self-gelling alginate formed soft macroporous gels supporting cellular infiltration and allowing ready access to microspheres carrying therapeutic factors embedded in the matrix. This in situ gelling formulation may thus be useful for stimulating immune cells at desired locales, such as solid tumors or infection sites, as well as for other soft tissue regeneration applications.


Assuntos
Alginatos/química , Fatores Imunológicos/química , Microesferas , Animais , Cálcio/química , Ilhas de CpG , Géis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Injeções , Interleucina-2/química , Camundongos , Camundongos Endogâmicos C57BL , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA