Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 209(1): 107411, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689503

RESUMO

Dystrophin is a large intracellular protein that prevents sarcolemmal ruptures by providing a mechanical link between the intracellular actin cytoskeleton and the transmembrane dystroglycan complex. Dystrophin deficiency leads to the severe muscle wasting disease Duchenne Muscular Dystrophy and the milder allelic variant, Becker Muscular Dystrophy (DMD and BMD). Previous work has shown that concomitant interaction of the actin binding domain 2 (ABD2) comprising spectrin like repeats 11 to 15 (R11-15) of the central domain of dystrophin, with both actin and membrane lipids, can greatly increase membrane stiffness. Based on a combination of SAXS and SANS measurements, mass spectrometry analysis of cross-linked complexes and interactive low-resolution simulations, we explored in vitro the molecular properties of dystrophin that allow the formation of ABD2-F-actin and ABD2-membrane model complexes. In dystrophin we identified two subdomains interacting with F-actin, one located in R11 and a neighbouring region in R12 and another one in R15, while a single lipid binding domain was identified at the C-terminal end of R12. Relative orientations of the dystrophin central domain with F-actin and a membrane model were obtained from docking simulation under experimental constraints. SAXS-based models were then built for an extended central subdomain from R4 to R19, including ABD2. Overall results are compatible with a potential F-actin/dystrophin/membrane lipids ternary complex. Our description of this selected part of the dystrophin associated complex bridging muscle cell membrane and cytoskeleton opens the way to a better understanding of how cell muscle scaffolding is maintained through this essential protein.


Assuntos
Distrofina/ultraestrutura , Distrofia Muscular de Duchenne/genética , Sarcolema/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/ultraestrutura , Distrofina/genética , Humanos , Lipídeos/química , Lipídeos/genética , Distrofia Muscular de Duchenne/patologia , Ligação Proteica , Sarcolema/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Complexo Ternário/genética , Fatores de Complexo Ternário/ultraestrutura , Difração de Raios X
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824881

RESUMO

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Assuntos
Distroglicanas/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Distroglicanas/química , Distroglicanas/genética , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica
3.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 406-420, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175376

RESUMO

ß-Dystroglycan (ß-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling ß-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that ß-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced ß-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and ß-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear ß-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear ß-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity.


Assuntos
Distroglicanas/metabolismo , Carioferinas/metabolismo , Laminina/metabolismo , Membrana Nuclear/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular , Distroglicanas/genética , Carioferinas/genética , Laminina/genética , Camundongos , Membrana Nuclear/genética , Complexo de Endopeptidases do Proteassoma/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína Exportina 1
4.
Hum Mol Genet ; 25(2): 266-74, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604135

RESUMO

Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of ß-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of ß-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of ß-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated ß-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of ß-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.


Assuntos
Dasatinibe/uso terapêutico , Distroglicanas/metabolismo , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinases da Família src/antagonistas & inibidores , Animais , Músculos/efeitos dos fármacos , Músculos/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fosforilação , Proteólise , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Quinases da Família src/metabolismo
5.
J Cell Biochem ; 117(9): 2149-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26990187

RESUMO

Dystroglycan is frequently lost in adenocarcinoma. α-dystroglycan is known to become hypoglycosylated due to transcriptional silencing of LARGE, whereas ß-dystroglycan is proteolytically cleaved and degraded. The mechanism and proteases involved in the cleavage events affecting ß-dystroglycan are poorly understood. Using LNCaP prostate cancer cells as a model system, we have investigated proteases and tyrosine phosphorylation affecting ß-dystroglycan proteolysis and nuclear targeting. Cell density or phorbol ester treatment increases dystroglycan proteolysis, whereas furin or γ-secretase inhibitors decreased dystroglycan proteolysis. Using resveratrol treatment of LNCaP cells cultured at low cell density in order to up-regulate notch and activate proteolysis, we identified significant increases in the levels of a 26 kDa ß-dystroglycan fragment. These data, therefore, support a cell density-dependent γ-secretase and furin mediated proteolysis of ß-dystroglycan, which could be notch stimulated, leading to nuclear targeting and subsequent degradation. 117: 2149-2157, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Núcleo Celular/metabolismo , Distroglicanas/metabolismo , Proteólise , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Linhagem Celular , Núcleo Celular/genética , Distroglicanas/genética , Furina/antagonistas & inibidores , Furina/genética , Furina/metabolismo , Humanos , Inibidores de Proteases/farmacologia
6.
J Cell Biochem ; 116(11): 2528-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26085308

RESUMO

Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and ß-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete ß-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for ß-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics.


Assuntos
Plaquetas/citologia , Caveolina 1/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Vinculina/metabolismo , Plaquetas/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Distroglicanas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Células Progenitoras de Megacariócitos/citologia , Trombina/metabolismo
7.
J Neurochem ; 135(3): 522-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26171643

RESUMO

The cell surface receptor dystroglycan mediates interactions between oligodendroglia and laminin-211, an extracellular matrix protein that regulates timely oligodendroglial development. However, dystroglycan's precise role in oligodendroglial development and the potential mechanisms to regulate laminin-dystroglycan interactions remain unknown. Here we report that oligodendroglial dystroglycan is cleaved by metalloproteinases, thereby uncoupling oligodendroglia from laminin binding. Dystroglycan cleavage is selectively stimulated by oligodendrocyte progenitor cell attachment to laminin-211, but not laminin-111 or poly-D-lysine. In addition, dystroglycan cleavage occurs most prominently in oligodendrocyte progenitor cells, with limited dystroglycan cleavage observed in differentiating oligodendrocytes. When dystroglycan cleavage is blocked by metalloproteinase inhibitors, oligodendrocyte progenitor cell proliferation is substantially decreased. Conversely, expression of the intracellular portion of cleaved dystroglycan results in increased oligodendrocyte progenitor cell proliferation, suggesting that endogenous dystroglycan cleavage may promote oligodendrocyte progenitor cell cycle progression. Intriguingly, while matrix metalloproteinase-2 and/or -9 have been reported to be responsible for dystroglycan cleavage, we find that these two metalloproteinases are neither necessary nor sufficient for cleavage of oligodendroglial dystroglycan. In summary, laminin-211 stimulates metalloproteinase-mediated dystroglycan cleavage in oligodendrocyte progenitor cells (but not in differentiated oligodendrocytes), which in turn promotes oligodendrocyte progenitor cell proliferation. This novel regulation of oligodendroglial laminin-dystroglycan interactions may have important consequences for oligodendroglial differentiation, both during development and during disease when metalloproteinase levels become elevated.


Assuntos
Proliferação de Células/fisiologia , Distroglicanas/metabolismo , Laminina/farmacologia , Metaloproteases/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Oligodendroglia/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos
8.
Biochemistry ; 53(11): 1801-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24628267

RESUMO

The structural determinants of the actin binding function of tandem calponin-homology (CH) domains are poorly understood, particularly the role of individual domains. We determined the actin binding affinity of isolated CH domains from human utrophin and compared them with the affinity of the full-length tandem CH domain. Traditional cosedimentation assays indicate that the C-terminal CH2 domain binds to F-actin much weaker than the full-length tandem CH domain. The N-terminal CH1 domain is less stable and undergoes severe protein aggregation; therefore, traditional actin cosedimentation assays could not be used. To address this, we have developed a folding-upon-binding method. We refolded the CH1 domain from its unfolded state in the presence of F-actin. This results in a competition between actin binding and aggregation. A differential centrifugation technique was used to distinguish actin binding from aggregation. Low-speed centrifugation pelleted CH1 aggregates, but not F-actin or its bound protein. Subsequent high-speed centrifugation resulted in the cosedimentation of bound CH1 along with F-actin. The CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain, unlike the CH2 domain. The actin binding cooperativity between the two domains was quantitatively calculated from the association constants of the full-length tandem CH domain and its CH domains, and found to be much smaller than the association constant of the CH1 domain alone. These results indicate that the actin binding affinity of the utrophin tandem CH domain is primarily determined by its CH1 domain, when compared to that of its CH2 domain or the cooperativity between the two CH domains.


Assuntos
Actinas/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Utrofina/química , Utrofina/metabolismo , Actinas/química , Animais , Sítios de Ligação/fisiologia , Bovinos , Cristalografia por Raios X , Humanos , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Calponinas
9.
Biochim Biophys Acta ; 1833(3): 698-711, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23220011

RESUMO

We recently characterized a nuclear import pathway for ß-dystroglycan; however, its nuclear role remains unknown. In this study, we demonstrate for the first time, the interaction of ß-dystroglycan with distinct proteins from different nuclear compartments, including the nuclear envelope (NE) (emerin and lamins A/C and B1), splicing speckles (SC35), Cajal bodies (p80-coilin), and nucleoli (Nopp140). Electron microscopy analysis revealed that ß-dystroglycan localized in the inner nuclear membrane, nucleoplasm, and nucleoli. Interestingly, downregulation of ß-dystroglycan resulted in both mislocalization and decreased expression of emerin and lamin B1, but not lamin A/C, as well in disorganization of nucleoli, Cajal bodies, and splicing speckles with the concomitant decrease in the levels of Nopp140, and p80-coilin, but not SC35. Quantitative reverse transcription PCR and cycloheximide-mediated protein arrest assays revealed that ß-dystroglycan deficiency did not change mRNA expression of NE proteins emerin and lamin B1 bud did alter their stability, accelerating protein turnover. Furthermore, knockdown of ß-dystroglycan disrupted NE-mediated processes including nuclear morphology and centrosome-nucleus linkage, which provides evidence that ß-dystroglycan association with NE proteins is biologically relevant. Unexpectedly, ß-dystroglycan-depleted cells exhibited multiple centrosomes, a characteristic of cancerous cells. Overall, these findings imply that ß-dystroglycan is a nuclear scaffolding protein involved in nuclear organization and NE structure and function, and that might be a contributor to the biogenesis of nuclear envelopathies.


Assuntos
Nucléolo Celular/metabolismo , Núcleo Celular/ultraestrutura , Corpos Enovelados/metabolismo , Distroglicanas/metabolismo , Mioblastos/metabolismo , Membrana Nuclear/metabolismo , Animais , Western Blotting , Nucléolo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Corpos Enovelados/genética , Distroglicanas/genética , Imunofluorescência , Imunoprecipitação , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Mioblastos/citologia , Mioblastos/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Hum Mol Genet ; 21(20): 4508-20, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22810924

RESUMO

Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice (Dag1(Y890F/Y890F)) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established model of muscular dystrophy. Dag1(Y890F/Y890F)/mdx mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including α-sarcoglycan, α-/ß-dystroglycan and sarcospan. Furthermore, Dag1(Y890F/Y890F)/mdx showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with mdx mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on Dag1(Y890F/Y890F)/mdx mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention.


Assuntos
Distroglicanas/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Fenótipo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/fisiopatologia , Fosforilação
11.
Biochem Biophys Res Commun ; 448(3): 274-80, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24792180

RESUMO

Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells.


Assuntos
Diferenciação Celular/fisiologia , Distroglicanas/fisiologia , Neutrófilos/citologia , Neutrófilos/fisiologia , Biomarcadores/metabolismo , Movimento Celular , Quimiotaxia de Leucócito , Distroglicanas/antagonistas & inibidores , Distroglicanas/genética , Células HL-60 , Humanos , Fagocitose , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Explosão Respiratória
12.
FASEB J ; 27(1): 359-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033320

RESUMO

Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15). We previously showed that DYS R11-15 also interacts with membrane lipids. We investigated the shear elastic constant (µ) and the surface viscosity (η(s)) of Langmuir phospholipid monolayers mimicking the inner leaflet of the sarcolemma in the presence of DYS R11-15 and actin. The initial interaction of 100 nM DYS R11-15 with the monolayers slightly modifies their rheological properties. Injection of 0.125 µM filamentous actin leads to a strong increase of µ and η(s,) from 0 to 5.5 mN/m and 2.4 × 10(-4) N · s/m, respectively. These effects are specific to DYS R11-15, require filamentous actin, and depend on phospholipid nature and lateral surface pressure. These findings suggest that the central domain of dystrophin contributes significantly to the stiffness and the stability of the sarcolemma through its simultaneous interactions with the cytoskeleton and lipid membrane. This mechanical link is likely to be a major contributing factor to the shock absorber function of dystrophin and muscle sarcolemmal integrity on mechanical stress.


Assuntos
Actinas/metabolismo , Distrofina/metabolismo , Sarcolema/metabolismo , Actinas/química , Membrana Celular/metabolismo , Distrofina/química , Humanos , Reologia
13.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474395

RESUMO

Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane ß-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.


Assuntos
Distroglicanas , Laminina , Distroglicanas/metabolismo , Laminina/metabolismo , Núcleo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Nuclear/metabolismo
14.
Proteins ; 80(5): 1377-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22275054

RESUMO

Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-ß aggregates, indicating a possible role for utrophin mutations in disease mechanisms.


Assuntos
Distrofina/química , Proteínas dos Microfilamentos/química , Utrofina/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Dicroísmo Circular , Distrofina/genética , Distrofina/metabolismo , Humanos , Cinética , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estabilidade Proteica , Desdobramento de Proteína , Alinhamento de Sequência , Temperatura , Termodinâmica , Utrofina/genética , Utrofina/metabolismo , Calponinas
15.
BMC Cell Biol ; 13: 1, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22257561

RESUMO

BACKGROUND: SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. RESULTS: We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. CONCLUSIONS: These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential.


Assuntos
Actinas/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Actinas/genética , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transformação Celular Neoplásica/genética , Células Cultivadas , Colágeno , Combinação de Medicamentos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Laminina , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Invasividade Neoplásica/genética , Fenótipo , Proteoglicanas , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
16.
J Cell Sci ; 123(Pt 1): 118-27, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20016072

RESUMO

Dystroglycan is a ubiquitously expressed cell adhesion protein. Its principal role has been determined as a component of the dystrophin-glycoprotein complex of muscle, where it constitutes a key component of the costameric cell adhesion system. To investigate more fundamental aspects of dystroglycan function in cell adhesion, we examined the role of dystroglycan in the dynamics and assembly of cellular adhesions in myoblasts. We show that beta-dystroglycan is recruited to adhesion structures and, based on staining for vinculin, that overexpression or depletion of dystroglycan affects both size and number of fibrillar adhesions. Knockdown of dystroglycan increases the size and number of adhesions, whereas overexpression decreases the number of adhesions. Dystroglycan knockdown or overexpression affects the ability of cells to adhere to different substrates, and has effects on cell migration that are consistent with effects on the formation of fibrillar adhesions. Using an SH3 domain proteomic screen, we identified vinexin as a binding partner for dystroglycan. Furthermore, we show that dystroglycan can interact indirectly with vinculin by binding to the vinculin-binding protein vinexin, and that this interaction has a role in dystroglycan-mediated cell adhesion and spreading. For the first time, we also demonstrate unequivocally that beta-dystroglycan is a resident of focal adhesions.


Assuntos
Distroglicanas/metabolismo , Adesões Focais/metabolismo , Mioblastos/metabolismo , Animais , Adesão Celular , Linhagem Celular Transformada , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/metabolismo , Clonagem Molecular , Distroglicanas/genética , Camundongos , Microscopia de Fluorescência , Mioblastos/patologia , Ligação Proteica/genética , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Transfecção , Vinculina/metabolismo
17.
J Cell Biol ; 176(7): 965-77, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17389230

RESUMO

In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5-180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform-specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and beta-dystroglycan, the key components of the dystrophin-glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients.


Assuntos
Distroglicanas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Plectina/metabolismo , Sarcolema/metabolismo , Animais , Compartimento Celular/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Desmina/metabolismo , Humanos , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Modelos Biológicos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Plectina/imunologia , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Ratos , Sarcolema/patologia , Sarcolema/ultraestrutura , Utrofina/metabolismo
18.
Biochim Biophys Acta ; 1804(9): 1713-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20472103

RESUMO

Dystrophin is one of a number of large cytoskeleton associated proteins that connect between various cytoskeletal elements and often are tethered to the membrane through other transmembrane protein complexes. These cytolinker proteins often provide structure and support to the cells where they are expressed, and mutations in genes encoding these proteins frequently gives rise to disease. Dystrophin is no exception in any of these respects, providing connections between a transmembrane complex known as the dystrophin-glycoprotein complex and the underlying cytoskeleton. The most established connection and possibly the most important is that to F-actin, but more recently evidence has been forthcoming of connections to membrane phospholipids, intermediate filaments and microtubules. Moreover it is becoming increasingly clear that the multiple spectrin-like repeats in the centre of the molecule, that had hitherto been thought to be largely redundant, harbour binding activities that have a significant impact on dystrophin functionality. This functionality is particularly apparent when assessed by the ability to rescue the dystrophic phenotype in mdx mice. This review will focus on the relatively neglected but functionally vital coiled-coil region of dystrophin, highlighting the structural relationships and interactions of the coiled-coil region and providing new insights into the functional role of this region.


Assuntos
Distrofina/química , Distrofina/metabolismo , Animais , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas
19.
Histopathology ; 59(2): 180-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21884196

RESUMO

AIMS: Oesophageal cancer is an increasingly common human malignancy, with its incidence in the West rapidly rising. It is associated with a very poor prognosis, and its exact pathogenesis is uncertain. Dystroglycan and E-cadherin are cell adhesion molecules, the loss of which is often related to tumour differentiation, aggressiveness and invasiveness. The aim was therefore to evaluate their roles in oesophageal carcinogenesis. METHODS AND RESULTS: mRNA and protein levels of dystroglycan and E-cadherin were examined in oesophageal normal and tumour tissue samples, and in FLO-1 oesophageal adenocarcinoma cells, using immunohistochemistry, western blotting and reverse transcription polymerase chain reaction. E-cadherin,α-dystroglycan and ß-dystroglycan levels were decreased in the oesophageal primary tumour samples, despite the presence of normal levels of dystroglycan mRNA. In FLO-1 cells, increasing cell density caused a decrease in protein levels of ß-dystroglycan over time, despite the persistent presence of dystroglycan mRNA. Re-expression of dystroglycan in FLO-1 cells reduced the numbers and size of colonies formed in soft agar, indicative of a role for dystroglycan in suppressing the tumour phenotype. CONCLUSIONS: The adenocarcinoma cells mirrored the in vivo situation with respect to dystroglycan function, making this a useful model of oesophageal carcinogenesis; moreover, loss of dystroglycan protein, despite the presence of dystroglycan mRNA, points to a post-translational mechanism of dystroglycan loss.


Assuntos
Adenocarcinoma/patologia , Distroglicanas , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Distroglicanas/genética , Distroglicanas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Expressão Gênica , Humanos , RNA Mensageiro/metabolismo
20.
Trends Cell Biol ; 16(4): 198-205, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16515861

RESUMO

The dystrophin-glycoprotein complex (DGC) can be considered as a specialized adhesion complex, linking the extracellular matrix to the actin cytoskeleton, primarily in muscle cells. Mutations in several components of the DGC lead to its partial or total loss, resulting in various forms of muscular dystrophy. These typically manifest as progressive wasting diseases with loss of muscle integrity. Debate is ongoing about the precise function of the DGC: initially a strictly mechanical role was proposed but it has been suggested that there is aberrant calcium handling in muscular dystrophy and, more recently, changes in MAP kinase and GTPase signalling have been implicated in the aetiology of the disease. Here, we discuss new and interesting developments in these aspects of DGC function and attempt to rationalize the mechanical, calcium and signalling hypotheses to provide a unifying hypothesis of the underlying process of muscular dystrophy.


Assuntos
Complexo de Proteínas Associadas Distrofina/fisiologia , Distrofina/fisiologia , Distrofia Muscular Animal/etiologia , Distrofia Muscular Animal/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Citoesqueleto/metabolismo , Distrofina/genética , Complexo de Proteínas Associadas Distrofina/genética , Previsões , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Contração Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA