RESUMO
Bispecific T cell engagers (bsTCEs) hold great promise for cancer treatment but face challenges due to the induction of cytokine release syndrome (CRS), on-target off-tumor toxicity, and the engagement of immunosuppressive regulatory T cells that limit efficacy. The development of Vγ9Vδ2-T cell engagers may overcome these challenges by combining high therapeutic efficacy with limited toxicity. By linking a CD1d-specific single-domain antibody (VHH) to a Vδ2-TCR-specific VHH, we create a bsTCE with trispecific properties, which engages not only Vγ9Vδ2-T cells but also type 1 NKT cells to CD1d+ tumors and triggers robust proinflammatory cytokine production, effector cell expansion, and target cell lysis in vitro. We show that CD1d is expressed by the majority of patient MM, (myelo)monocytic AML, and CLL cells and that the bsTCE triggers type 1 NKT and Vγ9Vδ2-T cell-mediated antitumor activity against these patient tumor cells and improves survival in in vivo AML, MM, and T-ALL mouse models. Evaluation of a surrogate CD1d-γδ bsTCE in NHPs shows Vγ9Vδ2-T cell engagement and excellent tolerability. Based on these results, CD1d-Vδ2 bsTCE (LAVA-051) is now evaluated in a phase 1/2a study in patients with therapy refractory CLL, MM, or AML.
Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos T Reguladores/patologia , Neoplasias Hematológicas/terapiaRESUMO
γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors (i.e. Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential. Vδ2 T-cells, in contrast, are enriched in circulation and consist of a large, relatively homogeneous, pro-inflammatory effector T-cell subset. Healthy individuals typically harbor in the order of 50-500 million Vγ9Vδ2 T-cells in the peripheral blood alone (1-10% of the total CD3+ T-cell population), which can rapidly expand upon stimulation. The Vγ9Vδ2 T-cell receptor senses intracellular phosphorylated metabolites, which accumulate in cancer cells as a result of mevalonate pathway dysregulation or upon pharmaceutical intervention. Early clinical studies investigating the therapeutic potential of Vγ9Vδ2 T-cells were based on either ex vivo expansion and adoptive transfer or their systemic activation with aminobisphosphonates or synthetic phosphoantigens, either alone or combined with low dose IL-2. Immune-related adverse events (irAE) were generally \mild, but the clinical efficacy of these approaches provided overall limited benefit. In recent years, critical advances have renewed the excitement for the potential of Vγ9Vδ2 T-cells in cancer immunotherapy. Here, we review γδ T-cell-based therapeutic strategies and discuss the prospects of those currently evaluated in clinical studies in cancer patients as well as future therapies that might arise from current promising pre-clinical results.
Assuntos
Linfócitos Intraepiteliais , Neoplasias , Humanos , Imunoterapia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos TRESUMO
BACKGROUND: This phase I/II trial in patients with recurrent glioblastoma (GBM) evaluates the safety and preliminary efficacy of marizomib, an irreversible pan-proteasome inhibitor that crosses the blood-brain barrier. METHODS: Part A assessed the safety and efficacy of marizomib monotherapy. In Part B, escalating doses of marizomib (0.5-0.8 mg/m2) in combination with bevacizumab were evaluated. Part C explored intra-patient dose escalation of marizomib (0.8-1.0 mg/m2) for the combination. RESULTS: In Part A, 30 patients received marizomib monotherapy. The most common AEs were fatigue (66.7%), headache (46.7%), hallucination (43.3%), and insomnia (43.3%). One patient (3.3%) achieved a partial response. In Part B, the recommended phase II dose of marizomib was 0.8 mg/m2 when combined with bevacizumab 10 mg/kg. In Part C, dose escalation to 1.0 mg/m2 was not tolerated. Pooled analysis of 67 patients treated with marizomib ≤0.8 mg/m2 and bevacizumab showed a nonoverlapping safety profile consistent with the known safety profile of each agent: the most common grade ≥3 AEs were hypertension (16.4%), confusion (13.4%), headache (10.4%), and fatigue (10.4%). The overall response rate was 34.3%, including 2 patients with complete response. Six-month progression-free survival was 29.8%; median overall survival was 9.1 months. CONCLUSIONS: The safety profile of marizomib as monotherapy and in combination with bevacizumab was consistent with previous observations that marizomib crosses the blood-brain barrier. Preliminary efficacy did not demonstrate a meaningful benefit of the addition of marizomib to bevacizumab for the treatment of recurrent GBM.
RESUMO
Purpose Lenalidomide maintenance therapy after autologous stem-cell transplantation (ASCT) demonstrated prolonged progression-free survival (PFS) versus placebo or observation in several randomized controlled trials (RCTs) of patients with newly diagnosed multiple myeloma (NDMM). All studies had PFS as the primary end point, and none were powered for overall survival (OS) as a primary end point. Thus, a meta-analysis was conducted to better understand the impact of lenalidomide maintenance in this setting. Patients and Methods The meta-analysis was conducted using primary-source patient-level data and documentation from three RCTs (Cancer and Leukemia Group B 100104, Gruppo Italiano Malattie Ematologiche dell'Adulto RV-MM-PI-209, and Intergroupe Francophone du Myélome 2005-02) that met the following prespecified inclusion criteria: an RCT in patients with NDMM receiving ASCT followed by lenalidomide maintenance versus placebo or observation with patient-level data available and achieved database lock for primary efficacy analysis. Results Overall, 1,208 patients were included in the meta-analysis (605 patients in the lenalidomide maintenance group and 603 in the placebo or observation group). The median PFS was 52.8 months for the lenalidomide group and 23.5 months for the placebo or observation group (hazard ratio, 0.48; 95% CI, 0.41 to 0.55). At a median follow-up time of 79.5 months for all surviving patients, the median OS had not been reached for the lenalidomide maintenance group, whereas it was 86.0 months for the placebo or observation group (hazard ratio, 0.75; 95% CI, 0.63 to 0.90; P = .001). The cumulative incidence rate of a second primary malignancy before disease progression was higher with lenalidomide maintenance versus placebo or observation, whereas the cumulative incidence rates of progression, death, or death as a result of myeloma were all higher with placebo or observation versus lenalidomide maintenance. Conclusion This meta-analysis demonstrates a significant OS benefit and confirms the PFS benefit with lenalidomide maintenance after ASCT in patients with NDMM when compared with placebo or observation.