Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(3): E135-43, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22160683

RESUMO

Using ultralow light intensities that are well suited for investigating biological samples, we demonstrate whole-cell superresolution imaging by nonlinear structured-illumination microscopy. Structured-illumination microscopy can increase the spatial resolution of a wide-field light microscope by a factor of two, with greater resolution extension possible if the emission rate of the sample responds nonlinearly to the illumination intensity. Saturating the fluorophore excited state is one such nonlinear response, and a realization of this idea, saturated structured-illumination microscopy, has achieved approximately 50-nm resolution on dye-filled polystyrene beads. Unfortunately, because saturation requires extremely high light intensities that are likely to accelerate photobleaching and damage even fixed tissue, this implementation is of limited use for studying biological samples. Here, reversible photoswitching of a fluorescent protein provides the required nonlinearity at light intensities six orders of magnitude lower than those needed for saturation. We experimentally demonstrate approximately 40-nm resolution on purified microtubules labeled with the fluorescent photoswitchable protein Dronpa, and we visualize cellular structures by imaging the mammalian nuclear pore and actin cytoskeleton. As a result, nonlinear structured-illumination microscopy is now a biologically compatible superresolution imaging method.


Assuntos
Células/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia/métodos , Dinâmica não Linear , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fluorescência , Células HEK293 , Humanos , Luz , Microtúbulos/metabolismo , Poro Nuclear/metabolismo , Proteínas
2.
Proc Natl Acad Sci U S A ; 107(37): 16016-22, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20705899

RESUMO

Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.


Assuntos
Microscopia de Fluorescência/métodos , Algoritmos , Animais , Sobrevivência Celular , Drosophila melanogaster/citologia , Saccharomyces cerevisiae/citologia , Software
3.
Nat Methods ; 6(5): 339-42, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19404253

RESUMO

Structured-illumination microscopy can double the resolution of the widefield fluorescence microscope but has previously been too slow for dynamic live imaging. Here we demonstrate a high-speed structured-illumination microscope that is capable of 100-nm resolution at frame rates up to 11 Hz for several hundred time points. We demonstrate the microscope by video imaging of tubulin and kinesin dynamics in living Drosophila melanogaster S2 cells in the total internal reflection mode.


Assuntos
Citofotometria/métodos , Iluminação , Microscopia de Vídeo/métodos , Algoritmos , Animais , Linhagem Celular , Citofotometria/instrumentação , Drosophila melanogaster , Processamento Eletrônico de Dados , Análise de Fourier , Processamento de Imagem Assistida por Computador , Cinesinas/metabolismo , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/instrumentação , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
4.
Proc SPIE Int Soc Opt Eng ; 75702010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24392198

RESUMO

A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. This technique will be useful for aligning the deformable mirror in a widefield microscope with adaptive optics and could potentially be used to correct aberrations in samples where small fluorescent beads or other point sources are used as reference beacons. Another advantage is the high resolution of the retrieved wavefont as compared with current Shack-Hartmann wavefront sensors. Here we demonstrate effective correction of the PSF in 3 iterations. Starting from a severely aberrated system, we achieve a Strehl ratio of 0.78 and a greater than 10-fold increase in maximum intensity.

5.
Science ; 320(5881): 1332-6, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18535242

RESUMO

Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.


Assuntos
Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Membrana Nuclear/ultraestrutura , Animais , Linhagem Celular , Corantes Fluorescentes , Heterocromatina/ultraestrutura , Imageamento Tridimensional/instrumentação , Indóis , Interfase , Laminas/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia de Fluorescência/instrumentação , Mioblastos , Lâmina Nuclear/ultraestrutura , Poro Nuclear/ultraestrutura , Óptica e Fotônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA