Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 107(11): 115501, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026683

RESUMO

Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to measure phonon spectra of FeV as a B2 ordered compound and as a bcc solid solution. The two data sets were combined to give an accurate phonon density of states, and the phonon partial densities of states for V and Fe atoms. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2 ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy by +0.22±0.03 kB/atom, which stabilizes the ordered phase to higher temperatures. First-principles calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.

2.
Phys Rev Lett ; 102(23): 237202, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19658966

RESUMO

Synchrotron x-ray diffraction (XRD) measurements, nuclear forward scattering (NFS) measurements, and density functional theory (DFT) calculations were performed on L1_{2}-ordered Pd3Fe. Measurements were performed at 300 K at pressures up to 33 GPa, and at 7 GPa at temperatures up to 650 K. The NFS revealed a collapse of the 57Fe magnetic moment between 8.9 and 12.3 GPa at 300 K, coinciding with a transition in bulk modulus found by XRD. Heating the sample under a pressure of 7 GPa showed negligible thermal expansion from 300 to 523 K, demonstrating Invar behavior. Zero-temperature DFT calculations identified a ferromagnetic ground state and showed several antiferromagnetic states had comparable energies at pressures above 20 GPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA