Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Neural Transm (Vienna) ; 128(2): 225-241, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33560471

RESUMO

Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Serotonina , Diferenciação Celular , Humanos , Núcleos da Rafe , Neurônios Serotoninérgicos
2.
Circ Res ; 123(6): 686-699, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30355234

RESUMO

RATIONALE: Regeneration of lost cardiomyocytes is a fundamental unresolved problem leading to heart failure. Despite several strategies developed from intensive studies performed in the past decades, endogenous regeneration of heart tissue is still limited and presents a big challenge that needs to be overcome to serve as a successful therapeutic option for myocardial infarction. OBJECTIVE: One of the essential prerequisites for cardiac regeneration is the identification of endogenous cardiomyocyte progenitors and their niche that can be targeted by new therapeutic approaches. In this context, we hypothesized that the vascular wall, which was shown to harbor different types of stem and progenitor cells, might serve as a source for cardiac progenitors. METHODS AND RESULTS: We describe generation of spontaneously beating mouse aortic wall-derived cardiomyocytes without any genetic manipulation. Using aortic wall-derived cells (AoCs) of WT (wild type), αMHC (α-myosin heavy chain), and Flk1 (fetal liver kinase 1)-reporter mice and magnetic bead-associated cell sorting sorting of Flk1+ AoCs from GFP (green fluorescent protein) mice, we identified Flk1+CD (cluster of differentiation) 34+Sca-1 (stem cell antigen-1)-CD44- AoCs as the population that gives rise to aortic wall-derived cardiomyocytes. This AoC subpopulation delivered also endothelial cells and macrophages with a particular accumulation within the aortic wall-derived cardiomyocyte containing colonies. In vivo, cardiomyocyte differentiation capacity was studied by implantation of fluorescently labeled AoCs into chick embryonic heart. These cells acquired cardiomyocyte-like phenotype as shown by αSRA (α-sarcomeric actinin) expression. Furthermore, coronary adventitial Flk1+ and CD34+ cells proliferated, migrated into the myocardium after mouse myocardial infarction, and expressed Isl-1+ (insulin gene enhancer protein-1) indicative of cardiovascular progenitor potential. CONCLUSIONS: Our data suggest Flk1+CD34+ vascular adventitia-resident stem cells, including those of coronary adventitia, as a novel endogenous source for generating cardiomyocytes. This process is essentially supported by endothelial cells and macrophages. In summary, the therapeutic manipulation of coronary adventitia-resident cardiac stem and their supportive cells may open new avenues for promoting cardiac regeneration and repair after myocardial infarction and for preventing heart failure.


Assuntos
Túnica Adventícia/citologia , Aorta Torácica/citologia , Diferenciação Celular , Proliferação de Células , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Animais , Antígenos CD34/metabolismo , Antígenos Ly/metabolismo , Células Cultivadas , Embrião de Galinha , Modelos Animais de Doenças , Feminino , Genes Reporter , Separação Imunomagnética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Cadeias Pesadas de Miosina/genética , Fenótipo , Regeneração , Transplante de Células-Tronco , Células-Tronco/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Miosinas Ventriculares/genética
3.
Proc Natl Acad Sci U S A ; 114(16): E3295-E3304, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28381594

RESUMO

Despite continuous interest in multiple sclerosis (MS) research, there is still a lack of neuroprotective strategies, because the main focus has remained on modulating the immune response. Here we performed in-depth analysis of neurodegeneration in experimental autoimmune encephalomyelitis (EAE) and in in vitro studies regarding the effect of the well-established L-type calcium channel antagonist nimodipine. Nimodipine treatment attenuated clinical EAE and spinal cord degeneration and promoted remyelination. Surprisingly, we observed calcium channel-independent effects on microglia, resulting in apoptosis. These effects were cell-type specific and irrespective of microglia polarization. Apoptosis was accompanied by decreased levels of nitric oxide (NO) and inducible NO synthase (iNOS) in cell culture as well as decreased iNOS and reactive oxygen species levels in EAE. In addition, increased numbers of Olig2+APC+ oligodendrocytes were detected. Overall, nimodipine application seems to generate a favorable environment for regenerative processes and therefore could be a treatment option for MS, because it combines features of immunomodulation with beneficial effects on neuroregeneration.


Assuntos
Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Microglia/patologia , Esclerose Múltipla/patologia , Nimodipina/farmacologia , Remielinização/fisiologia , Animais , Canais de Cálcio Tipo L/química , Células Cultivadas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Espécies Reativas de Oxigênio/metabolismo , Remielinização/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
4.
Eur J Immunol ; 45(9): 2602-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140335

RESUMO

Natural killer (NK) cells are a subset of cytotoxic lymphocytes that recognize and kill tumor- and virus-infected cells without prior stimulation. Killing of target cells is a multistep process including adhesion to target cells, formation of an immunological synapse, and polarization and release of cytolytic granules. The role of distinct potassium channels in this orchestrated process is still poorly understood. The current study reveals that in addition to the voltage-gated KV 1.3 and the calcium-activated KCa 3.1 channels, human NK cells also express the two-pore domain K2 P channel TASK2 (TWIK-related acid-sensitive potassium channel). Expression of Task2 varies among NK-cell subsets and depends on their differentiation and activation state. Despite its different expression in TASK2(high) CD56(bright) CD16(-) and TASK2(low) CD56(dim) CD16(+) NK cells, TASK2 is involved in cytokine-induced proliferation and cytolytic function of both subsets. TASK2 is crucial for leukocyte functional antigen (LFA-1) mediated adhesion of both resting and cytokine-activated NK cells to target cells, an early step in killing of target cells. With regard to the following mechanism, TASK2 plays a role in release of cytotoxic granules by resting, but not IL-15-induced NK cells. Taken together, our data exhibit two-pore potassium channels as important players in NK-cell activation and effector function.


Assuntos
Citotoxicidade Imunológica , Sinapses Imunológicas/metabolismo , Células Matadoras Naturais/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Antígeno CD56/genética , Antígeno CD56/imunologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Células HEK293 , Humanos , Interleucina-15/farmacologia , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Cultura Primária de Células , Receptores de IgG/genética , Receptores de IgG/imunologia , Transdução de Sinais , Análise de Célula Única
5.
Toxicol Appl Pharmacol ; 305: 22-39, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260674

RESUMO

Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62µM and 1.15µM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32µM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.


Assuntos
Canal de Potássio ERG1/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Animais , Alcaloides Diterpenos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Coração/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Xenopus
6.
Am J Physiol Gastrointest Liver Physiol ; 307(1): G98-106, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24833707

RESUMO

Nitric oxide (NO) is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. Its main effector, NO-sensitive guanylyl cyclase (NO-GC), is expressed in several GI cell types, including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and fibroblast-like cells. Up to date, the interplay between neurons and these cells to initiate a nitrergic inhibitory junction potential (IJP) is unclear. Here, we investigate the origin of the nitrergic IJP in murine fundus and colon. IJPs were determined in fundus and colon SMC of mice lacking NO-GC globally (GCKO) and specifically in SMC (SM-GCKO), ICC (ICC-GCKO), and both SMC/ICC (SM/ICC-GCKO). Nitrergic IJP was abolished in ICC-GCKO fundus and reduced in SM-GCKO fundus. In the colon, the amplitude of nitrergic IJP was reduced in ICC-GCKO, whereas nitrergic IJP in SM-GCKO was reduced in duration. These results were corroborated by loss of the nitrergic IJP in global GCKO. In conclusion, our results prove the obligatory role of NO-GC in ICC for the initiation of an IJP. NO-GC in SMC appears to enhance the nitrergic IJP, resulting in a stronger and prolonged hyperpolarization in fundus and colon SMC, respectively. Thus NO-GC in both cell types is mandatory to induce a full nitrergic IJP. Our data from the colon clearly reveal the nitrergic IJP to be biphasic, resulting from individual inputs of ICC and SMC.


Assuntos
Colo/inervação , Fundo Gástrico/inervação , Células Intersticiais de Cajal/metabolismo , Inibição Neural , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico/metabolismo , Transmissão Sináptica , Animais , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fatores de Tempo
7.
J Cell Sci ; 125(Pt 10): 2486-99, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22357950

RESUMO

Serotonin receptors 5-HT(1A) and 5-HT(7) are highly coexpressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT(1A) and 5-HT(7) receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either of 5-HT(1A) or 5-HT(7) receptors together with monomers coexist in cells. The highest affinity for complex formation was obtained for the 5-HT(7)-5-HT(7) homodimers, followed by the 5-HT(7)-5-HT(1A) heterodimers and 5-HT(1A)-5-HT(1A) homodimers. Functionally, heterodimerization decreases 5-HT(1A)-receptor-mediated activation of G(i) protein without affecting 5-HT(7)-receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT(1A) receptor to activate G-protein-gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is crucially involved in initiation of the serotonin-mediated 5-HT(1A) receptor internalization and also enhances the ability of the 5-HT(1A) receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT(7) receptors in the hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT(1A)-5-HT(7) heterodimers and, consequently, their functional importance undergoes pronounced developmental changes.


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Dimerização , Camundongos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/genética , Receptores de Serotonina/química , Receptores de Serotonina/genética
8.
PLoS One ; 19(4): e0300687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593151

RESUMO

Fabry disease (FD) is a lysosomal storage disorder of X-linked inheritance. Mutations in the α-galactosidase A gene lead to cellular globotriaosylceramide (Gb3) depositions and triggerable acral burning pain in both sexes as an early FD symptom of unknown pathophysiology. We aimed at elucidating the link between skin cells and nociceptor sensitization contributing to FD pain in a sex-associated manner. We used cultured keratinocytes and fibroblasts of 27 adult FD patients and 20 healthy controls. Epidermal keratinocytes and dermal fibroblasts were cultured and immunoreacted to evaluate Gb3 load. Gene expression analysis of pain-related ion channels and pro-inflammatory cytokines was performed in dermal fibroblasts. We further investigated electrophysiological properties of induced pluripotent stem cell (iPSC) derived sensory-like neurons of a man with FD and a healthy man and incubated the cells with interleukin 8 (IL-8) or fibroblast supernatant as an in vitro model system. Keratinocytes displayed no intracellular, but membrane-bound Gb3 deposits. In contrast, fibroblasts showed intracellular Gb3 and revealed higher gene expression of potassium intermediate/small conductance calcium-activated potassium channel 3.1 (KCa 3.1, KCNN4) in both, men and women with FD compared to controls. Additionally, cytokine expression analysis showed increased IL-8 RNA levels only in female FD fibroblasts. Patch-clamp studies revealed reduced rheobase currents for both iPSC neuron cell lines incubated with IL-8 or fibroblast supernatant of women with FD. We conclude that Gb3 deposition in female FD patient skin fibroblasts may lead to increased KCa3.1 activity and IL-8 secretion. This may result in cutaneous nociceptor sensitization as a potential mechanism contributing to a sex-associated FD pain phenotype.


Assuntos
Doença de Fabry , Adulto , Feminino , Humanos , Masculino , alfa-Galactosidase/genética , Citocinas , Doença de Fabry/complicações , Doença de Fabry/genética , Doença de Fabry/diagnóstico , Fibroblastos/metabolismo , Interleucina-8/genética , Dor , Pele/metabolismo
9.
Brain Commun ; 6(2): fcae095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638148

RESUMO

Acral burning pain triggered by fever, thermal hyposensitivity and skin denervation are hallmarks of small fibre neuropathy in Fabry disease, a life-threatening X-linked lysosomal storage disorder. Variants in the gene encoding alpha-galactosidase A may lead to impaired enzyme activity with cellular accumulation of globotriaosylceramide. To study the underlying pathomechanism of Fabry-associated small fibre neuropathy, we generated a neuronal in vitro disease model using patient-derived induced pluripotent stem cells from three Fabry patients and one healthy control. We further generated an isogenic control line via gene editing. We subjected induced pluripotent stem cells to targeted peripheral neuronal differentiation and observed intra-lysosomal globotriaosylceramide accumulations in somas and neurites of Fabry sensory neurons using super-resolution microscopy. At functional level, patch-clamp analysis revealed a hyperpolarizing shift of voltage-gated sodium channel steady-state inactivation kinetics in isogenic control neurons compared with healthy control neurons (P < 0.001). Moreover, we demonstrate a drastic increase in Fabry sensory neuron calcium levels at 39°C mimicking clinical fever (P < 0.001). This pathophysiological phenotype was accompanied by thinning of neurite calibres in sensory neurons differentiated from induced pluripotent stem cells derived from Fabry patients compared with healthy control cells (P < 0.001). Linear-nonlinear cascade models fit to spiking responses revealed that Fabry cell lines exhibit altered single neuron encoding properties relative to control. We further observed mitochondrial aggregation at sphingolipid accumulations within Fabry sensory neurites utilizing a click chemistry approach together with mitochondrial dysmorphism compared with healthy control cells. We pioneer pilot insights into the cellular mechanisms contributing to pain, thermal hyposensitivity and denervation in Fabry small fibre neuropathy and pave the way for further mechanistic in vitro studies in Fabry disease and the development of novel treatment approaches.

10.
J Mol Cell Cardiol ; 61: 133-141, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23702286

RESUMO

Voltage-gated sodium channels composed of a pore-forming α subunit and auxiliary ß subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used immunohistochemical methods to define the level of expression and the subcellular localization of sodium channel α and ß subunits in human atrial myocytes. Nav1.2 channels are located in highest density at intercalated disks where ß1 and ß3 subunits are also expressed. Nav1.4 and the predominant Nav1.5 channels are located in a striated pattern on the cell surface at the z-lines together with ß2 subunits. Nav1.1, Nav1.3, and Nav1.6 channels are located in scattered puncta on the cell surface in a pattern similar to ß3 and ß4 subunits. Nav1.5 comprised approximately 88% of the total sodium channel staining, as assessed by quantitative immunohistochemistry. Functional studies using whole cell patch-clamp recording and measurements of contractility in human atrial cells and tissue showed that TTX-sensitive (non-Nav1.5) α subunit isoforms account for up to 27% of total sodium current in human atrium and are required for maximal contractility. Overall, our results show that multiple sodium channel α and ß subunits are differentially localized in subcellular compartments in human atrial myocytes, suggesting that they play distinct roles in initiation and conduction of the action potential and in excitation-contraction coupling. TTX-sensitive sodium channel isoforms, even though expressed at low levels relative to TTX-sensitive Nav1.5, contribute substantially to total cardiac sodium current and are required for normal contractility. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".


Assuntos
Átrios do Coração/metabolismo , Miocárdio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Conexina 43/metabolismo , Átrios do Coração/patologia , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Especificidade de Órgãos , Subunidades Proteicas/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
11.
Am J Physiol Gastrointest Liver Physiol ; 304(5): G543-52, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275616

RESUMO

Epidermal growth factor receptor (EGFR) expression and signaling can induce cellular protection after intestinal inflammation. L-Glutamine (GLN) is known to prevent apoptosis after intestinal injury by activating MAPK and phosphatidylinositol 3-kinase (PI3-K)/Akt pathways. However, the role of EGFR expression and signaling in GLN-mediated cellular protection in intestinal epithelial-6 (IEC-6) cells after heat stress (HS) is unknown. To address the role of EGFR in GLN-mediated protection, IEC-6 cells were treated with GLN in the presence or absence of EGFR small interfering RNA, the EGFR tyrosine kinase inhibitor AG1478, the ERK1/2 inhibitor PD98059, the p38MAPK inhibitor SB203580, or the PI3-K/Akt inhibitor LY294002 under basal and HS conditions. GLN-mediated cell survival was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Phosphorylated and/or total levels of EGFR, cleaved caspase-3, poly(ADP-ribose) polymerase-1, ERK1/2, p38MAPK, and Akt were assessed by Western blotting. We showed that HS induced a decrease in total, cytoplasmic, and nuclear EGFR levels in IEC-6 cells, which was prevented by GLN supplementation, leading to attenuated apoptosis via EGFR small interfering RNA. Furthermore, the protective effect of GLN was lessened by AG1478, PD98059, and LY294002 but was not affected by SB203580. AG1478 attenuated GLN-mediated increases in ERK1/2 and decreases in p38MAPK phosphorylation. However, AG1478 had no effect on GLN-mediated augmentations in Akt phosphorylation. In summary, EGFR expression was important in the protective mechanism of GLN, as well as GLN-mediated activation of EGFR tyrosine kinase activity. GLN-mediated EGFR signaling activated ERK1/2 and decreased p38MAPK signaling. However, GLN-mediated Akt phosphorylation after HS seems to be independent of EGFR signaling.


Assuntos
Citoproteção/efeitos dos fármacos , Células Epiteliais/fisiologia , Receptores ErbB/genética , Receptores ErbB/fisiologia , Glutamina/farmacologia , Transtornos de Estresse por Calor/fisiopatologia , Intestinos/fisiologia , Transdução de Sinais/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/biossíntese , Transtornos de Estresse por Calor/genética , Humanos , Intestinos/citologia , Intestinos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
12.
Biochim Biophys Acta ; 1808(8): 2036-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21575593

RESUMO

A variety of ion channels are supposed to orchestrate the homoeostatic volume regulation in T lymphocytes. However, the relative contribution of different potassium channels to the osmotic volume regulation and in particular to the regulatory volume decrease (RVD) in T cells is far from clear. This study explores a putative role of the newly identified K(2P) channels (TASK1, TASK2, TASK3 and TRESK) along with the voltage-gated potassium channel K(V)1.3 and the calcium-activated potassium channel K(Ca)3.1 in the RVD of murine T lymphocytes, using genetic and pharmacological approaches. K(2P) channel knockouts exerted profound effects on the osmotic properties of murine T lymphocytes, as revealed by reduced water and RVD-related solute permeabilities. Moreover, both genetic and pharmacological data proved a key role of K(V)1.3 and TASK2 channels in the RVD of murine T cells exposed to hypotonic saline. Our experiments demonstrate a leading role of potassium channels in the osmoregulation of T lymphocytes under different conditions. In summary, the present study sheds new light on the complex and partially redundant network of potassium channels involved in the basic physiological process of the cellular volume homeostasis and extends the repertoire of potassium channels by the family of K(2P) channels.


Assuntos
Tamanho Celular , Canal de Potássio Kv1.3/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Linfócitos T/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Soluções Hipotônicas , Canal de Potássio Kv1.3/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Canais de Potássio de Domínios Poros em Tandem/genética , Solução Salina Hipertônica , Linfócitos T/efeitos dos fármacos , Fatores de Tempo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
13.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
14.
J Biol Chem ; 285(37): 28968-79, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20610389

RESUMO

Cell adhesion molecules and neurotrophin receptors are crucial for the development and the function of the nervous system. Among downstream effectors of neurotrophin receptors and recognition molecules are ion channels. Here, we provide evidence that G protein-coupled inwardly rectifying K(+) channel Kir3.3 directly binds to the neural cell adhesion molecule (NCAM) and neurotrophin receptor TrkB. We identified the binding sites for NCAM and TrkB at the C-terminal intracellular domain of Kir3.3. The interaction between NCAM, TrkB, and Kir3.3 was supported by immunocytochemical co-localization of Kir3.3, NCAM, and/or TrkB at the surface of hippocampal neurons. Co-expression of TrkB and Kir3.1/3.3 in Xenopus oocytes increased the K(+) currents evoked by Kir3.1/3.3 channels. This current enhancement was reduced by the concomitant co-expression with NCAM. Both surface fluorescence measurements of microinjected oocytes and cell surface biotinylation of transfected CHO cells indicated that the cell membrane localization of Kir3.3 is regulated by TrkB and NCAM. Furthermore, the level of Kir3.3, but not of Kir3.2, at the plasma membranes was reduced in TrkB-deficient mice, supporting the notion that TrkB regulates the cell surface expression of Kir3.3. The premature expression of developmentally late appearing Kir3.1/3.3 in hippocampal neurons led to a reduction of NCAM-induced neurite outgrowth. Our observations indicate a decisive role for the neuronal K(+) channel in regulating NCAM-dependent neurite outgrowth and attribute a physiologically meaningful role to the functional interplay of Kir3.3, NCAM, and TrkB in ontogeny.


Assuntos
Membrana Celular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Hipocampo/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Receptor trkB/metabolismo , Animais , Células CHO , Adesão Celular/fisiologia , Membrana Celular/genética , Cricetinae , Cricetulus , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Oócitos , Ligação Proteica/fisiologia , Ratos , Receptor trkB/genética , Xenopus laevis
15.
J Mol Cell Cardiol ; 48(1): 261-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19426735

RESUMO

Voltage-gated sodium channels are composed of pore-forming alpha- and auxiliary beta-subunits and are responsible for the rapid depolarization of cardiac action potentials. Recent evidence indicates that neuronal tetrodotoxin (TTX) sensitive sodium channel alpha-subunits are expressed in the heart in addition to the predominant cardiac TTX-resistant Na(v)1.5 sodium channel alpha-subunit. These TTX-sensitive isoforms are preferentially localized in the transverse tubules of rodents. Since neonatal cardiomyocytes have yet to develop transverse tubules, we determined the complement of sodium channel subunits expressed in these cells. Neonatal rat ventricular cardiomyocytes were stained with antibodies specific for individual isoforms of sodium channel alpha- and beta-subunits. alpha-actinin, a component of the z-line, was used as an intracellular marker of sarcomere boundaries. TTX-sensitive sodium channel alpha-subunit isoforms Na(v)1.1, Na(v)1.2, Na(v)1.3, Na(v)1.4 and Na(v)1.6 were detected in neonatal rat heart but at levels reduced compared to the predominant cardiac alpha-subunit isoform, Na(v)1.5. Each of the beta-subunit isoforms (beta1-beta4) was also expressed in neonatal cardiac cells. In contrast to adult cardiomyocytes, the alpha-subunits are distributed in punctate clusters across the membrane surface of neonatal cardiomyocytes; no isoform-specific subcellular localization is observed. Voltage clamp recordings in the absence and presence of 20 nM TTX provided functional evidence for the presence of TTX-sensitive sodium current in neonatal ventricular myocardium which represents between 20 and 30% of the current, depending on membrane potential and experimental conditions. Thus, as in the adult heart, a range of sodium channel alpha-subunits are expressed in neonatal myocytes in addition to the predominant TTX-resistant Na(v)1.5 alpha-subunit and they contribute to the total sodium current.


Assuntos
Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Canais de Sódio/metabolismo , Actinina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletrofisiologia , Feminino , Imuno-Histoquímica , Miócitos Cardíacos/efeitos dos fármacos , Gravidez , Isoformas de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
16.
Biochem Biophys Res Commun ; 391(2): 1262-7, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20006580

RESUMO

Within the first external loop of mouse and human TRESK subunits one or two N-glycosylation consensus sites were identified, respectively. Using site directed mutagenesis and Western immunoblotting a single residue of both orthologues was found to be glycosylated upon heterologous expression. Two-electrode voltage-clamp recordings from Xenopus oocytes revealed that current amplitudes of N-glycosylation mutants were reduced by 80% as compared to wildtype TRESK. To investigate membrane targeting, GFP-tagged TRESK subunits were expressed in Xenopus oocytes and fluorescence intensity at the cell surface was measured by confocal microscopy. Signals of the N-glycosylation mutants were reduced by >50%, indicating that their lower current amplitudes substantially result from inadequate surface expression of the channel.


Assuntos
Membrana Celular/metabolismo , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Glicosilação , Humanos , Camundongos , Dados de Sequência Molecular , Oócitos , Técnicas de Patch-Clamp , Canais de Potássio/genética , Xenopus
17.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 573-580, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31720798

RESUMO

Chloroform has been used over decades in anesthesia before it was replaced by other volatile anesthetics like halothane or sevoflurane. Some of the reasons were inadmissible side effects of chloroform like bradycardia or neural illness. In the present study, we identified members of the G protein-activated inwardly rectifying potassium channel family (Kir3) expressed in Xenopus oocytes as potential common molecular targets for both the neural and cardiac effects of chloroform. Millimolar concentration currents representing a 1:10000 dilution of commercially available chloroform were used in laboratories that augment neuronal Kir3.1/3.2 currents as well as cardiac Kir3.1/3.4. This effect was selective and only observed in currents from Kir3 subunits but not in currents from Kir2 subunits. Augmentation of atrial Kir3.1/3.4 currents leads to an effective drop of the heart rate and a reduction in contraction force in isolated mouse atria.


Assuntos
Função Atrial/efeitos dos fármacos , Bradicardia/induzido quimicamente , Clorofórmio/toxicidade , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Átrios do Coração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Bradicardia/fisiopatologia , Células HEK293 , Humanos , Camundongos , Neurônios/fisiologia , Oócitos , Xenopus laevis
18.
Exp Neurol ; 324: 113134, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778662

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disorder that leads to cellular globotriaosylceramide (Gb3) accumulation due to mutations in the gene encoding α-galactosidase A. Trigger-induced acral burning pain is an early FD symptom of unknown pathophysiology. We aimed at investigating the potential role of skin fibroblasts in nociceptor sensitization. PATIENTS AND METHODS: We enrolled 40 adult FD patients and ten healthy controls, who underwent a 6-mm skin punch biopsy at the lower leg. Dermal fibroblasts were cultivated and analyzed for Gb3 load. Fibroblast electrical activity was assessed using patch-clamp analysis at baseline and upon incubation with agalsidase-α for 24 h. We investigated gene expression of CC motif chemokine ligand 2 (CCL2), Ca2+activated K+-channel 1.1 (KCa1.1), interferone-γ (IFN-γ), transforming growth factor-ß1 (TGF-ß1), and transmembrane receptor notch homolog 1 (Notch1) using quantitative real-time-PCR, and protein levels of KCa1.1 by ELISA. Gene expression was determined at baseline and after fibroblast stimulation with tumor necrosis factor-α (TNF), modeling inflammation as a common pain trigger in FD. RESULTS: Total Gb3 load was higher in FD fibroblasts than in control fibroblasts (p < .01). Upon increase of intracellular Ca2+ concentrations, we detected differential electrical activity of KCa1.1 in fibroblasts obtained from patients with FD. Gene expression (p < .05) and protein levels of KCa1.1 (p < .05) were higher in fibroblasts from FD patients compared to control fibroblasts, whereas electric channel activity was lower in FD fibroblasts. After incubation with agalsidase-α, we observed an over-proportionate increase of KCa1.1 activity in FD fibroblasts reaching 7-fold the currents of control cells (p < .01). Gene expression studies revealed higher mRNA levels of CCL2, INF-γ, and Notch1 in FD fibroblasts compared to controls at baseline and after TNF incubation (p < .05 each), while TGF-ß1 was higher in FD fibroblasts only after incubation with TNF (p < .05). CONCLUSIONS: Gb3 deposition in skin fibroblasts may impair KCa1.1 activity and activate the Notch1 signaling pathway. The resulting increase in pro-inflammatory mediator expression may contribute to cutaneous nociceptor sensitization as a potential mechanism of FD-associated pain.


Assuntos
Doença de Fabry/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Receptor Notch1/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triexosilceramidas/metabolismo , Adolescente , Adulto , Idoso , Animais , Quimiocina CCL2/metabolismo , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Feminino , Fibroblastos/patologia , Expressão Gênica/efeitos dos fármacos , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Pessoa de Meia-Idade , Dor , Cultura Primária de Células , Pele/patologia , Fator de Transcrição RelA/metabolismo , Triexosilceramidas/antagonistas & inibidores , Triexosilceramidas/genética , Adulto Jovem
19.
J Physiol ; 587(Pt 5): 929-52, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19139046

RESUMO

The two-pore-domain potassium channels TASK-1 (KCNK3) and TASK-3 (KCNK9) modulate the electrical activity of neurons and many other cell types. We expressed TASK-1, TASK-3 and related reporter constructs in Xenopus oocytes, mammalian cell lines and various yeast strains to study the mechanisms controlling their transport to the surface membrane and the role of 14-3-3 proteins. We measured potassium currents with the voltage-clamp technique and fused N- and C-terminal fragments of the channels to various reporter proteins to study changes in subcellular localisation and surface expression. Mutational analysis showed that binding of 14-3-3 proteins to the extreme C-terminus of TASK-1 and TASK-3 masks a tri-basic motif, KRR, which differs in several important aspects from canonical arginine-based (RxR) or lysine-based (KKxx) retention signals. Pulldown experiments with GST fusion proteins showed that the KRR motif in the C-terminus of TASK-3 channels was able to bind to COPI coatomer. Disabling the binding of 14-3-3, which exposes the KRR motif, caused localisation of the GFP-tagged channel protein mainly to the Golgi complex. TASK-1 and TASK-3 also possess a di-basic N-terminal retention signal, KR, whose function was found to be independent of the binding of 14-3-3. Suppression of channel surface expression with dominant-negative channel mutants revealed that interaction with 14-3-3 has no significant effect on the dimeric assembly of the channels. Our results give a comprehensive description of the mechanisms by which 14-3-3 proteins, together with N- and C-terminal sorting signals, control the intracellular traffic of TASK-1 and TASK-3.


Assuntos
Proteínas 14-3-3/fisiologia , Espaço Intracelular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Feminino , Humanos , Espaço Intracelular/genética , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Oócitos/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico/genética , Xenopus laevis
20.
Eur J Neurosci ; 28(5): 931-40, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18691333

RESUMO

The mammalian startle reflex is a fast response to sudden intense sensory stimuli that can be increased by anxiety or decreased by reward. The cellular integration of sensory and modulatory information takes place in giant neurones of the caudal pontine reticular formation (PnC). The startle reflex is known to be enhanced by 5-hydroxytryptamine (5-HT); however, signalling mechanisms that change the excitability of the PnC giant neurones are poorly understood. Possible molecular candidates are two-pore-domain K(+) (K(2)P) channels that generate a variable K(+) background conductance and control neuronal excitability upon activation of G-protein-coupled receptors. We demonstrate by in situ hybridization that the K(2)P channel TASK-3 is substantially expressed in PnC giant neurones. Brain slice recordings revealed a corresponding background K(+) current in these cells that forms about 30% of the outward current at -30 mV. Inactivation of TASK-3 at pH 6.4 and by ruthenium red depolarized the cells by about 7 mV and increased the action potential frequency as well as duration. Specific activation of Galpha(q)-coupled 5-HT(2) receptors with alpha-methyl 5-HT evoked a similar increase of neuronal excitability. Consistently, we measured afferent synaptic inputs from serotonergic raphe neurones and detected 5-HT(2C) receptors in PnC giant neurones by immunohistochemistry. Thus, neuronal excitability of PnC giant neurones in vivo is most likely increased by serotonergic projections via the K(2)P channel TASK-3.


Assuntos
Neurônios/metabolismo , Ponte/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Formação Reticular/metabolismo , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Imuno-Histoquímica , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ponte/citologia , Ponte/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Núcleos da Rafe/citologia , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Formação Reticular/citologia , Formação Reticular/efeitos dos fármacos , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA