Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(6): e1010966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37343008

RESUMO

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection. We have previously shown that vhs is also involved in regulating the nuclear-cytoplasmic compartmentalisation of the virus transcriptome, and in the absence of VP22 a number of virus transcripts are sequestered in the nucleus late in infection. Here we show that despite expressing minimal amounts of structural proteins and failing to plaque on human fibroblasts, the strain 17 Δ22 virus replicates and spreads as efficiently as Wt virus, but without causing cytopathic effect (CPE). Nonetheless, CPE-causing virus spontaneously appeared on Δ22-infected human fibroblasts, and four viruses isolated in this way had all acquired point mutations in vhs which rescued late protein translation. However, unlike a virus deleted for vhs, these viruses still induced the degradation of both cellular and viral mRNA suggesting that vhs mutation in the absence of VP22 is necessary to overcome a more complex disturbance in mRNA metabolism than mRNA degradation alone. The ultimate outcome of secondary mutations in vhs is therefore the rescue of virus-induced CPE caused by late protein synthesis, and while there is a clear selective pressure on HSV1 to mutate vhs for optimal production of late structural proteins, the purpose of this is over and above that of virus production.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Transcriptoma , Ribonucleases/metabolismo , Vírion/metabolismo , RNA Mensageiro/genética , Herpes Simples/genética , Herpes Simples/metabolismo
2.
J Gen Virol ; 105(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572740

RESUMO

The herpes simplex virus 1 (HSV1) virion host shutoff (vhs) protein is an endoribonuclease that regulates the translational environment of the infected cell, by inducing the degradation of host mRNA via cellular exonuclease activity. To further understand the relationship between translational shutoff and mRNA decay, we have used ectopic expression to compare HSV1 vhs (vhsH) to its homologues from four other alphaherpesviruses - varicella zoster virus (vhsV), bovine herpesvirus 1 (vhsB), equine herpesvirus 1 (vhsE) and Marek's disease virus (vhsM). Only vhsH, vhsB and vhsE induced degradation of a reporter luciferase mRNA, with poly(A)+ in situ hybridization indicating a global depletion of cytoplasmic poly(A)+ RNA and a concomitant increase in nuclear poly(A)+ RNA and the polyA tail binding protein PABPC1 in cells expressing these variants. By contrast, vhsV and vhsM failed to induce reporter mRNA decay and poly(A)+ depletion, but rather, induced cytoplasmic G3BP1 and poly(A)+ mRNA- containing granules and phosphorylation of the stress response proteins eIF2α and protein kinase R. Intriguingly, regardless of their apparent endoribonuclease activity, all vhs homologues induced an equivalent general blockade to translation as measured by single-cell puromycin incorporation. Taken together, these data suggest that the activities of translational arrest and mRNA decay induced by vhs are separable and we propose that they represent sequential steps of the vhs host interaction pathway.


Assuntos
Herpesvirus Humano 1 , Proteínas Virais , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ribonucleases , DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Herpesvirus Humano 1/genética , Endorribonucleases/metabolismo , Estabilidade de RNA , Vírion/genética , Vírion/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Virol ; 96(14): e0192621, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758691

RESUMO

Virion host shutoff (vhs) protein is an endoribonuclease encoded by herpes simplex virus 1 (HSV1). vhs causes several changes to the infected cell environment that favor the translation of late (L) virus proteins: cellular mRNAs are degraded, immediate early (IE) and early (E) viral transcripts are sequestered in the nucleus with polyA binding protein (PABPC1), and dsRNA is degraded to help dampen the PKR-dependent stress response. To further our understanding of the cell biology of vhs, we constructed a virus expressing vhs tagged at its C terminus with GFP. When first expressed, vhs-GFP localized to juxtanuclear clusters, and later it colocalized and interacted with its binding partner VP16, and was packaged into virions. Despite vhs-GFP maintaining activity when expressed in isolation, it failed to degrade mRNA or relocalise PABPC1 during infection, while viral transcript levels were similar to those seen for a vhs knockout virus. PKR phosphorylation was also enhanced in vhs-GFP infected cells, which is in line with a failure to degrade dsRNA. Nonetheless, mRNA FISH revealed that as in Wt but not Dvhs infection, IE and E, but not L transcripts were retained in the nucleus of vhs-GFP infected cells at late times. These results revealed that the vhs-induced nuclear retention of IE and E transcripts was dependent on vhs expression but not on its endoribonuclease activity, uncoupling these two functions of vhs. IMPORTANCE Like many viruses, herpes simplex virus 1 (HSV1) expresses an endoribonuclease, the virion host shutoff (vhs) protein, which regulates the RNA environment of the infected cell and facilitates the classical cascade of virus protein translation. It does this by causing the degradation of some mRNA molecules and the nuclear retention of others. Here, we describe a virus expressing vhs tagged at its C terminus with a green fluorescent protein (GFP) and show that the vhs-GFP fusion protein retains the physical properties of native vhs but does not induce the degradation of mRNA. Nonetheless, vhs-GFP maintains the ability to trap the early virus transcriptome in the nucleus to favor late protein translation, proving for the first time that mRNA degradation is not a prerequisite for vhs effects on the nuclear transcriptome. This virus, therefore, has uncoupled the nuclear retention and degradation activities of vhs, providing a new understanding of vhs during infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Estabilidade de RNA , Ribonucleases , Proteínas Virais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteínas de Fluorescência Verde/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Estabilidade de RNA/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo
4.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801869

RESUMO

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.


Assuntos
Evolução Molecular , Genoma Viral , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Equador , Humanos , Modelos Moleculares , Conformação Proteica , Seleção Genética , América do Sul , Proteínas Virais/química , Proteínas Virais/genética , Sequenciamento Completo do Genoma
5.
Emerg Infect Dis ; 24(5): 935-937, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29664378

RESUMO

We report identification of an Oropouche virus strain in a febrile patient from Ecuador by using metagenomic sequencing and real-time reverse transcription PCR. Virus was isolated from patient serum by using Vero cells. Phylogenetic analysis of the whole-genome sequence showed the virus to be similar to a strain from Peru.


Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Adulto , Animais , Infecções por Bunyaviridae/epidemiologia , Chlorocebus aethiops , Equador/epidemiologia , Humanos , Masculino , Orthobunyavirus/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero
6.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29303971

RESUMO

Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10-5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra-roost genomic analysis whereby a relatively high sequence homogeneity was found across the genomes of three EBLV-2 isolates obtained several years apart (2007, 2008, and 2014) from M. daubentonii at the same site (Stokesay Castle, Shropshire, UK).


Assuntos
Evolução Molecular , Lyssavirus/genética , Infecções por Rhabdoviridae/virologia , Animais , Genoma Viral , Humanos , Lyssavirus/classificação , Lyssavirus/isolamento & purificação , Filologia , Infecções por Rhabdoviridae/epidemiologia
7.
Emerg Infect Dis ; 22(8): 1456-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27434858

RESUMO

A novel lyssavirus was isolated from brains of Indian flying foxes (Pteropus medius) in Sri Lanka. Phylogenetic analysis of complete virus genome sequences, and geographic location and host species, provides strong evidence that this virus is a putative new lyssavirus species, designated as Gannoruwa bat lyssavirus.


Assuntos
Quirópteros/virologia , Lyssavirus/isolamento & purificação , Infecções por Rhabdoviridae/veterinária , Animais , Feminino , Genoma Viral , Lyssavirus/genética , Masculino , Filogenia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia , Sri Lanka/epidemiologia
8.
J Gen Virol ; 97(5): 1060-1065, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26932442

RESUMO

Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases.


Assuntos
Infecções por Hantavirus/veterinária , Orthohantavírus/isolamento & purificação , Ratos , Doenças dos Roedores/virologia , Animais , Comores/epidemiologia , Feminino , Variação Genética , Orthohantavírus/classificação , Orthohantavírus/genética , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/virologia , Masculino , Filogenia , Doenças dos Roedores/epidemiologia
9.
Virol J ; 11: 63, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708671

RESUMO

BACKGROUND: Human rabies infection continues to be a significant public health burden globally, and is occasionally imported to high income settings where the Milwaukee Protocol for intensive care management has recently been employed, with limited success in improving survival. Access to molecular diagnostics, pre- and post-mortem, and documentation of pathophysiological responses while using the Milwaukee protocol, can add useful insights for the future of rabies management. CASE PRESENTATION: A 58-year-old British Asian woman was referred to a regional general hospital in the UK with hydrophobia, anxiety and confusion nine weeks after receiving a dog bite in North West India. Nuchal skin biopsy, saliva, and a skin biopsy from the site of the dog bite wound, taken on the day of admission, all demonstrated the presence of rabies virus RNA. Within 48 hours sequence analysis of viral RNA confirmed the diagnosis and demonstrated that the virus was a strain closely related to canine rabies viruses circulating in South Asia. Her condition deteriorated rapidly with increased agitation and autonomic dysfunction. She was heavily sedated and intubated on the day after admission, treated according to a modified Milwaukee protocol, and remained stable until she developed heart block and profound acidosis and died on the eighth day. Analysis of autopsy samples showed a complete absence of rabies neutralizing antibody in cerebrospinal fluid and serum, and corresponding high levels of virus antigen and nucleic acid in brain and cerebrospinal fluid. Quantitative PCR showed virus was also distributed widely in peripheral tissues despite mild or undetectable histopathological changes. Vagus nerve branches in the heart showed neuritis, a probable Negri body but no demonstrable rabies antigen. CONCLUSION: Rapid molecular diagnosis and strain typing is helpful in the management of human rabies infection. Post-mortem findings such as vagal neuritis highlight clinically important effects on the cardiovascular system which are typical for the clinical course of rabies in humans. Management guided by the Milwaukee protocol is feasible within well-resourced intensive care units, but its role in improving outcome for canine-derived rabies remains theoretical.


Assuntos
Mordeduras e Picadas/complicações , Vírus da Raiva/isolamento & purificação , Raiva/diagnóstico , Raiva/patologia , Animais , Cães , Evolução Fatal , Feminino , Humanos , Índia , Pessoa de Meia-Idade , RNA Viral/isolamento & purificação , Viagem , Reino Unido
10.
BMC Genomics ; 14: 444, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23822119

RESUMO

BACKGROUND: With the advent of Next Generation Sequencing (NGS) technologies, the ability to generate large amounts of sequence data has revolutionized the genomics field. Most RNA viruses have relatively small genomes in comparison to other organisms and as such, would appear to be an obvious success story for the use of NGS technologies. However, due to the relatively low abundance of viral RNA in relation to host RNA, RNA viruses have proved relatively difficult to sequence using NGS technologies. Here we detail a simple, robust methodology, without the use of ultra-centrifugation, filtration or viral enrichment protocols, to prepare RNA from diagnostic clinical tissue samples, cell monolayers and tissue culture supernatant, for subsequent sequencing on the Roche 454 platform. RESULTS: As representative RNA viruses, full genome sequence was successfully obtained from known lyssaviruses belonging to recognized species and a novel lyssavirus species using these protocols and assembling the reads using de novo algorithms. Furthermore, genome sequences were generated from considerably less than 200 ng RNA, indicating that manufacturers' minimum template guidance is conservative. In addition to obtaining genome consensus sequence, a high proportion of SNPs (Single Nucleotide Polymorphisms) were identified in the majority of samples analyzed. CONCLUSIONS: The approaches reported clearly facilitate successful full genome lyssavirus sequencing and can be universally applied to discovering and obtaining consensus genome sequences of RNA viruses from a variety of sources.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Encéfalo/virologia , Linhagem Celular , Cricetinae , Heterogeneidade Genética , Lyssavirus/genética , Camundongos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Cultura de Vírus
11.
J Virol ; 86(18): 10242-3, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22923801

RESUMO

Lyssaviruses (family Rhabdoviridae) constitute one of the most important groups of viral zoonoses globally. All lyssaviruses cause the disease rabies, an acute progressive encephalitis for which, once symptoms occur, there is no effective cure. Currently available vaccines are highly protective against the predominantly circulating lyssavirus species. Using next-generation sequencing technologies, we have obtained the whole-genome sequence for a novel lyssavirus, Ikoma lyssavirus (IKOV), isolated from an African civet in Tanzania displaying clinical signs of rabies. Genetically, this virus is the most divergent within the genus Lyssavirus. Characterization of the genome will help to improve our understanding of lyssavirus diversity and enable investigation into vaccine-induced immunity and protection.


Assuntos
Lyssavirus/genética , Animais , Genoma Viral , Lyssavirus/classificação , Lyssavirus/isolamento & purificação , Lyssavirus/patogenicidade , Dados de Sequência Molecular , RNA Viral/genética , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Tanzânia , Viverridae/virologia , Zoonoses/virologia
12.
Eur J Immunol ; 41(7): 1924-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21491418

RESUMO

Subsets of NK cells can have distinct functions. Here, we report that >25% of human peripheral blood NK cells express HLA-DR after culture with IL-2. This can be driven by an expansion of a small subset of NK cells expressing HLA-DR, in contrast to previous assumptions that HLA-DR is upregulated on previously negative cells. HLA-DR-expressing NK cells showed enhanced degranulation to susceptible target cells and expressed chemokine receptor CXCR3, which facilitated their enrichment following exposure to CXCL11/I-TAC. Suggesting HLA-DR-expressing NK cells have an important role in an immune response, stimulation of PBMCs with Mycobacterium bovis BCG (BCG) triggered expansion of this subset. Importantly, the magnitude of an individual's NK cell IFN-γ response triggered by BCG was associated with the initial frequency of HLA-DR-expressing NK cells in PBMCs. More directly indicating the importance of HLA-DR-expressing NK cells, enriching the frequency of this subset in PBMCs substantially augmented the IFN-γ response to BCG. Thus, HLA-DR expression marks a distinct subset of NK cells, present at low frequency in circulating blood but readily expanded by IL-2, that can play an important role during immune responses to BCG.


Assuntos
Antígenos HLA-DR/análise , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Mycobacterium bovis/imunologia , Antígeno CD56/análise , Comunicação Celular , Degranulação Celular , Quimiocina CXCL11/imunologia , Quimiotaxia de Leucócito , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Subpopulações de Linfócitos/imunologia , Receptores CXCR3/imunologia
13.
Arterioscler Thromb Vasc Biol ; 31(4): 914-20, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233446

RESUMO

OBJECTIVE: The chemokine CXCL16 serves as a scavenger receptor for oxidized low-density lipoprotein and as an adhesion molecule and chemoattractant for cells expressing the receptor CXCR6. A commonly occurring CXCL16 allele has been described containing 2 nonsynonymous single-nucleotide polymorphisms in complete linkage disequilibrium, although the effects on CXCL16 function are unknown. Here, we examined the effect of the single-nucleotide polymorphisms on CXCL16 function and assessed the association of the mutant allele with coronary heart disease (CHD). METHODS AND RESULTS: Both wild-type and mutant T123V181-CXCL16 were readily expressed in vitro and were similarly functional in assays of oxidized low-density lipoprotein scavenging and chemotaxis. However, unlike wild-type CXCL16, T123V181-CXCL16 was unable to promote adhesion of CXCR6(+) cells. Findings were confirmed ex vivo, with monocytes from donors homozygous for the T123V181 allele unable to facilitate adhesion of CXCR6 transfectants. In the London Life Sciences Prospective Population cohort (n = 2797), we found that the T123V181 allele was not associated with protection or susceptibility to CHD (adjusted odds ratio, 1.01; 95% CI, 0.95 to 1.10; P = 0.74). CONCLUSIONS: CXCL16-mediated cell adhesion plays at best a modest role in CHD, and the scavenging and chemotactic properties of the chemokine are more likely to be more important in disease pathogenesis.


Assuntos
Adesão Celular , Quimiocinas CXC/genética , Doença das Coronárias/genética , Monócitos/imunologia , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de Quimiocinas/metabolismo , Receptores Depuradores/genética , Receptores Virais/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Quimiocina CXCL16 , Quimiocinas CXC/metabolismo , Quimiotaxia , Técnicas de Cocultura , Doença das Coronárias/imunologia , Feminino , Predisposição Genética para Doença , Células HEK293 , Homozigoto , Humanos , Lipoproteínas LDL/metabolismo , Modelos Logísticos , Londres , Masculino , Camundongos , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Razão de Chances , Fenótipo , Estudos Prospectivos , Receptores CXCR6 , Receptores de Quimiocinas/genética , Receptores Depuradores/metabolismo , Receptores Virais/genética , Medição de Risco , Fatores de Risco , Fatores de Tempo , Transfecção
14.
J Mol Diagn ; 24(4): 320-336, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121140

RESUMO

Previous studies have described reverse-transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal/oropharyngeal swab and saliva samples. This multisite clinical evaluation describes the validation of an improved sample preparation method for extraction-free RT-LAMP and reports clinical performance of four RT-LAMP assay formats for SARS-CoV-2 detection. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva samples from asymptomatic and symptomatic individuals across health care and community settings. For direct RT-LAMP, overall diagnostic sensitivity (DSe) was 70.35% (95% CI, 63.48%-76.60%) on swabs and 84.62% (95% CI, 79.50%-88.88%) on saliva, with diagnostic specificity of 100% (95% CI, 98.98%-100.00%) on swabs and 100% (95% CI, 99.72%-100.00%) on saliva, compared with quantitative RT-PCR (RT-qPCR); analyzing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe values were 100% (95% CI, 96.34%-100%) and 77.78% (95% CI, 70.99%-83.62%) for swabs, and 99.01% (95% CI, 94.61%-99.97%) and 87.61% (95% CI, 82.69%-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and diagnostic specificity were 96.06% (95% CI, 92.88%-98.12%) and 99.99% (95% CI, 99.95%-100%) for swabs, and 80.65% (95% CI, 73.54%-86.54%) and 99.99% (95% CI, 99.95%-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use cases, including frequent, interval-based direct RT-LAMP of saliva from asymptomatic individuals who may otherwise be missed using symptomatic testing alone.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Sensibilidade e Especificidade
15.
J Allergy Clin Immunol ; 126(1): 150-7.e2, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20541248

RESUMO

BACKGROUND: The chemokine receptor CCR3 orchestrates the migration of eosinophils, basophils, T(H)2 lymphocytes, and mast cells during the allergic response, with CCR3 blockade a potential means of therapeutic intervention. Non-synonymous single nucleotide polymorphisms (SNPs) within the ccr3 gene have previously been described, with little information regarding their effects on CCR3 function. OBJECTIVE: To characterize the effects of nonsynonymous SNPs within the ccr3 gene. METHODS: Site-directed mutagenesis was used to generate N-terminally tagged mutant CCR3 constructs corresponding to reported SNPs. Cell transfectants expressing either wild-type or mutant CCR3 were studied by flow cytometry, Western blotting, and confocal microscopy and examined for their ability to migrate to the CC chemokine ligand CCL11/eotaxin. RESULTS: An L324P mutant CCR3 protein corresponding to the previously identified T971C SNP was not expressed at the cell surface, and cells remained unresponsive to CCL11 in chemotaxis assays. Confocal microscopy confirmed that L324P-CCR3 had a predominantly intracellular distribution compared with wild-type CCR3. A L324A variant of CCR3 had an identical phenotype to the L324P mutant, suggesting that L324 per se is critical for successful trafficking of nascent CCR3 to the cell membrane. The processes involved appear to be specific for CCR3, because an identical mutation in the homologous receptor CCR1 had minor effects. CONCLUSION: Trafficking to the cell surface of nascent CCR3 is critically dependent on a C-terminal leucine residue, suggestive of specific mechanisms for CCR3 export. Manipulation of these mechanisms may suggest novel means of antagonizing CCR3 function in the treatment of allergy.


Assuntos
Membrana Celular/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores CCR3/genética , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Lisossomos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Transporte Proteico , Receptores CCR3/química , Receptores CCR3/metabolismo
16.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688063

RESUMO

Extensive global sampling and sequencing of the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have enabled researchers to monitor its spread and to identify concerning new variants. Two important determinants of variant spread are how frequently they arise within individuals and how likely they are to be transmitted. To characterize within-host diversity and transmission, we deep-sequenced 1313 clinical samples from the United Kingdom. SARS-CoV-2 infections are characterized by low levels of within-host diversity when viral loads are high and by a narrow bottleneck at transmission. Most variants are either lost or occasionally fixed at the point of transmission, with minimal persistence of shared diversity, patterns that are readily observable on the phylogenetic tree. Our results suggest that transmission-enhancing and/or immune-escape SARS-CoV-2 variants are likely to arise infrequently but could spread rapidly if successfully transmitted.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Variação Genética , SARS-CoV-2/genética , COVID-19/imunologia , Coinfecção/virologia , Infecções por Coronavirus/virologia , Coronavirus Humano OC43 , Características da Família , Genoma Viral , Humanos , Evasão da Resposta Imune , Mutação , Filogenia , RNA Viral/genética , RNA-Seq , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética , Reino Unido , Carga Viral
17.
J Infect ; 82(1): 117-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271166

RESUMO

The COVID-19 pandemic has illustrated the importance of simple, rapid and accurate diagnostic testing. This study describes the validation of a new rapid SARS-CoV-2 RT-LAMP assay for use on extracted RNA or directly from swab offering an alternative diagnostic pathway that does not rely on traditional reagents that are often in short supply during a pandemic. Analytical specificity (ASp) of this new RT-LAMP assay was 100% and analytical sensitivity (ASe) was between 1 × 101 and 1 × 102 copies per reaction when using a synthetic DNA target. The overall diagnostic sensitivity (DSe) and specificity (DSp) of RNA RT-LAMP was 97% and 99% respectively, relative to the standard of care rRT-PCR. When a CT cut-off of 33 was employed, above which increasingly evidence suggests there is a low risk of patients shedding infectious virus, the diagnostic sensitivity was 100%. The DSe and DSp of Direct RT-LAMP (that does not require RNA extraction) was 67% and 97%, respectively. When setting CT cut-offs of ≤33 and ≤25, the DSe increased to 75% and 100%, respectively, time from swab-to-result, CT < 25, was < 15 min. We propose that RNA RT-LAMP could replace rRT-PCR where there is a need for increased sample throughput and Direct RT-LAMP as a near-patient screening tool to rapidly identify highly contagious individuals within emergency departments and care homes during times of increased disease prevalence ensuring negative results still get laboratory confirmation.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , SARS-CoV-2/genética , Técnicas de Laboratório Clínico/métodos , Humanos , Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase em Tempo Real , Saliva/virologia , Sensibilidade e Especificidade
18.
Clin Microbiol Infect ; 27(9): 1348.e1-1348.e7, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33901668

RESUMO

OBJECTIVES: Rapid, high throughput diagnostics are a valuable tool, allowing the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations so as to identify and isolate people with asymptomatic and symptomatic infections. Reagent shortages and restricted access to high throughput testing solutions have limited the effectiveness of conventional assays such as quantitative RT-PCR (RT-qPCR), particularly throughout the first months of the coronavirus disease 2019 pandemic. We investigated the use of LamPORE, where loop-mediated isothermal amplification (LAMP) is coupled to nanopore sequencing technology, for the detection of SARS-CoV-2 in symptomatic and asymptomatic populations. METHODS: In an asymptomatic prospective cohort, for 3 weeks in September 2020, health-care workers across four sites (Birmingham, Southampton, Basingstoke and Manchester) self-swabbed with nasopharyngeal swabs weekly and supplied a saliva specimen daily. These samples were tested for SARS-CoV-2 RNA using the Oxford Nanopore LamPORE system and a reference RT-qPCR assay on extracted sample RNA. A second retrospective cohort of 848 patients with influenza-like illness from March 2020 to June 2020 were similarly tested from nasopharyngeal swabs. RESULTS: In the asymptomatic cohort a total of 1200 participants supplied 23 427 samples (3966 swab, 19 461 saliva) over a 3-week period. The incidence of SARS-CoV-2 detection using LamPORE was 0.95%. Diagnostic sensitivity and specificity of LamPORE was >99.5% (decreasing to approximately 98% when clustered estimation was used) in both swab and saliva asymptomatic samples when compared with the reference RT-qPCR test. In the retrospective symptomatic cohort, the incidence was 13.4% and the sensitivity and specificity were 100%. CONCLUSIONS: LamPORE is a highly accurate methodology for the detection of SARS-CoV-2 in both symptomatic and asymptomatic population settings and can be used as an alternative to RT-qPCR.


Assuntos
COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Limite de Detecção , Sequenciamento por Nanoporos , Nasofaringe/virologia , Poliproteínas/genética , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade , Proteínas Virais/genética
19.
PLoS Pathog ; 4(1): e5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18208323

RESUMO

The vaccinia virus (VACV) A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI), and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM) interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM) and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM) chemokine-chemokine receptor interactions.


Assuntos
Quimiocinas CC/metabolismo , Vaccinia virus/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/metabolismo , Quimiotaxia/imunologia , Cristalização , Glicosaminoglicanos/metabolismo , Heparina/farmacologia , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Conformação Proteica , Relação Estrutura-Atividade
20.
PLoS Negl Trop Dis ; 14(1): e0007897, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961856

RESUMO

Oropouche virus (OROV) is responsible for outbreaks of Oropouche fever in parts of South America. We recently identified and isolated OROV from a febrile Ecuadorian patient, however, a previously published qRT-PCR assay did not detect OROV in the patient sample. A primer mismatch to the Ecuadorian OROV lineage was identified from metagenomic sequencing data. We report the optimisation of an qRT-PCR assay for the Ecuadorian OROV lineage, which subsequently identified a further five cases in a cohort of 196 febrile patients. We isolated OROV via cell culture and developed an algorithmically-designed primer set for whole-genome amplification of the virus. Metagenomic sequencing of the patient samples provided OROV genome coverage ranging from 68-99%. The additional cases formed a single phylogenetic cluster together with the initial case. OROV should be considered as a differential diagnosis for Ecuadorian patients with febrile illness to avoid mis-diagnosis with other circulating pathogens.


Assuntos
Infecções por Bunyaviridae/virologia , Orthobunyavirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Bunyaviridae/diagnóstico , Estudos de Coortes , Equador , Genoma Viral , Humanos , Metagenoma , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA