Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 8(5): 257-66, 1998 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-9501066

RESUMO

BACKGROUND: Deconvoluting protein kinase signaling pathways using conventional genetic and biochemical approaches has been difficult because of the overwhelming number of closely related kinases. If cell-permeable inhibitors of individual kinases could be designed, the role of each kinase could be systematically assessed. RESULTS: We have devised an approach combining chemistry and genetics to develop the first highly specific cell-permeable inhibitor of the oncogenic tyrosine kinase v-Src. A functionally silent active-site mutation was made in v-Src to distinguish it from all other cellular kinases. A tight-binding cell-permeable inhibitor of this mutant kinase that does not inhibit wild-type kinases was designed and synthesized. In vitro and whole-cell assays established the unique specificity of the mutant v-Src-inhibitor pair. The inhibitor reversed cell transformation by the engineered but not the 'wild type' v-Src, establishing that changes in cellular signaling can be attributed to specific inhibition of the engineered kinase. The generality of the method was tested by engineering another tyrosine kinase, Fyn, to contain the corresponding active-site mutation to the one in v-Src. The same compound that inhibited mutant v-Src could also potently inhibit the engineered Fyn kinase. CONCLUSIONS: Allele-specific cell-permeable inhibitors of individual Src family kinases can be rapidly developed in an approach that should be applicable to all kinases. This approach will be useful for the deconvolution of kinase-mediated cellular pathways and for validating novel kinases as good targets for drug discovery both in vitro and in vivo.


Assuntos
Alelos , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteínas Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Células 3T3 , Trifosfato de Adenosina/metabolismo , Animais , Desenho de Fármacos , Camundongos , Modelos Químicos , Modelos Moleculares , Engenharia de Proteínas , Especificidade por Substrato
2.
Chem Biol ; 5(2): 91-101, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9495830

RESUMO

BACKGROUND: Protein kinases play a central role in controlling diverse signal transduction pathways in all cells. The identification of the direct cellular substrates of individual protein kinases remains the key challenge in the field. RESULTS: We describe the protein engineering of v-Src to produce a kinase which preferentially uses an ATP analog, N6-(benzyl) ATP, as a substrate, rather than the natural v-Src substrate, ATP. The sidechain of a single residue (Ile338) controls specificity for N6-substituted ATP analogs in the binding pocket of v-Src. Elimination of this sidechain by mutation to glycine produces a v-Src kinase which preferentially utilizes N6-(benzyl) ATP as a phosphodonor substrate. Our engineering strategy is generally applicable to the Src family kinases: mutation of the corresponding residue (Thr339 to glycine) in the Fyn kinase confers specificity for N6-(benzyl) ATP on Fyn. CONCLUSIONS: The v-Src tyrosine kinase has been engineered to exhibit specificity for an unnatural ATP analog, N6-(benzyl) ATP, even in a cellular context where high concentrations of natural ATP are present (1-5 mM), where preferential use of the ATP analog by the mutant kinase is essential. The mutant v-Src transfers phosphate more efficiently with the designed unnatural analog than with ATP. As the identical mutation in the Src-family kinase Fyn confers on Fyn the ability to recognize the same unnatural ATP analog, our strategy is likely to be generally applicable to other protein kinases and may help to identify the direct targets of specific kinases.


Assuntos
Nucleotídeos/metabolismo , Proteína Oncogênica pp60(v-src)/metabolismo , Engenharia de Proteínas , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida/genética , Proteína Oncogênica pp60(v-src)/genética , Peptídeos/metabolismo , Fosforilação , Fosfotirosina/análise , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-fyn , Proteínas Proto-Oncogênicas c-hck , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
3.
Chem Biol ; 6(9): 671-8, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10467133

RESUMO

BACKGROUND: Small-molecule inhibitors that can target individual kinases are powerful tools for use in signal transduction research. It is difficult to find such compounds because of the enormous number of protein kinases and the highly conserved nature of their catalytic domains. Recently, a novel, potent, Src family selective tyrosine kinase inhibitor was reported (PP1). Here, we study the structural basis for this inhibitor's specificity for Src family kinases. RESULTS: A single residue corresponding to Ile338 (v-Src numbering; Thr338 in c-Src) in Src family tyrosine kinases largely controls PP1's ability to inhibit protein kinases. Mutation of Ile338 to a larger residue such as methionine or phenylalanine in v-Src makes this inhibitor less potent. Conversely, mutation of Ile338 to alanine or glycine increases PP1's potency. PP1 can inhibit Ser/Thr kinases if the residue corresponding to Ile338 in v-Src is mutated to glycine. We have accurately predicted several non-Src family kinases that are moderately (IC(50) approximately 1 microM) inhibited by PP1, including c-Abl and the MAP kinase p38. CONCLUSIONS: Our mutagenesis studies of the ATP-binding site in both tyrosine kinases and Ser/Thr kinases explain why PP1 is a specific inhibitor of Src family tyrosine kinases. Determination of the structural basis of inhibitor specificity will aid in the design of more potent and more selective protein kinase inhibitors. The ability to desensitize a particular kinase to PP1 inhibition of residue 338 or conversely to sensitize a kinase to PP1 inhibition by mutation should provide a useful basis for chemical genetic studies of kinase signal transduction.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Quinases Ativadas por Mitógeno , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas/farmacologia , Quinases da Família src/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Inibidores Enzimáticos/química , Isoleucina/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/fisiologia , Mutação , Conformação Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas/química , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno , Quinases da Família src/química , Quinases da Família src/genética
4.
Bioorg Med Chem ; 6(8): 1219-26, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9784863

RESUMO

Engineered proteins with specificity for unnatural substrates or ligands are useful tools for studying or manipulating complex biological systems. We have engineered the prototypical tyrosine kinase v-Src to accept an unnatural ATP analogue N6-(benzyl) ATP in order to identify v-Src's direct cellular substrates. Here we have used molecular modeling to analyze the binding mode of N6-(benzyl) ATP. Based on this modeling we proposed that a new ATP analogue (N6-(2-phenethyl) ATP might be a better substrate than N6-(benzyl) ATP for the I338G mutant of v-Src. In fact the newly proposed analogue (N6-(2-phenethyl) ATP is a somewhat improved substrate for the engineered kinase (kcat = 0.6 min-1, KM = 8 microM). We also synthesized and screened three analogues of N6-(benzyl) ATP: N6-(2-methylbenzyl), ATP N6-(3-methylbenzyl), and ATP N6-(4-methylbenzyl) ATP to further probe the dimensions and shape of the introduced pocket. Results from screening newly synthesized ATP analogues agreed well with our modeling predictions. We conclude that rather than engineering a 'new' pocket by mutation of Ile 338 in v-Src to the smaller Ala or Gly residues, the I338G and I338A mutants possess a 'path' for the N6 substituent on ATP to gain access to an existing pocket in the ATP binding site. We expect to be able to extend the engineering of v-Src's ATP specificity to other kinase families based on our understanding of the binding modes of ATP analogues to engineered kinases.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteína Oncogênica pp60(v-src)/metabolismo , Trifosfato de Adenosina/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cinética , Modelos Moleculares , Mutação , Proteína Oncogênica pp60(v-src)/antagonistas & inibidores , Proteína Oncogênica pp60(v-src)/genética , Transdução de Sinais/fisiologia , Especificidade por Substrato , Quinases da Família src/antagonistas & inibidores
5.
Biochemistry ; 39(47): 14400-8, 2000 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-11087392

RESUMO

Engineered protein kinases with unnatural nucleotide specificity and inhibitor sensitivity have been developed to trace kinase substrate targets. We first engineered unnatural nucleotide specificity into v-Src by mutating one residue, isoleucine 338, to alanine. This position is highly conserved among all kinases in the sense that it is always occupied by either a large hydrophobic residue or threonine. Because of the conservation of this residue and the highly conserved fold of the kinase family, we have attempted to generalize the engineering of all kinases on the basis of our success with v-Src. Although many kinases can be similarly engineered using v-Src as a blueprint, we encountered one kinase, c-Abl, which when mutated, does not display the ability to accept unnatural ATP analogues. To overcome this failure of the engineered c-Abl (T315A) to accept unnatural nucleotides, we developed a new strategy for introducing unnatural nucleotide specificity into kinases. We generated a chimeric kinase in which regions of the kinase domain of c-Abl were swapped with the corresponding regions of v-Src (I338A). Specifically, we engineered two chimeras in which the N-terminal lobe of the SH1 domain of c-Abl was swapped with that of v-Src. These kinase chimeras were found to have the same unnatural nucleotide specificity as that of v-Src (I338A), while retaining the peptide specificity of c-Abl. Thus, these chimeric kinases are suitable for identifying the direct substrates of c-Abl. These engineered chimeric enzymes provide a new strategy for constructing kinases with tailor-made ligand binding properties.


Assuntos
Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Inibidores Enzimáticos/farmacologia , Proteína Oncogênica pp60(v-src)/genética , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Quinases da Família src/genética , Trifosfato de Adenosina/análogos & derivados , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Domínio Catalítico/genética , Sequência Consenso , Humanos , Isoleucina/genética , Camundongos , Dados de Sequência Molecular , Proteína Oncogênica pp60(v-src)/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/síntese química , Deleção de Sequência , Especificidade por Substrato/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-10940260

RESUMO

Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.


Assuntos
Técnicas Genéticas , Ligantes , Engenharia de Proteínas , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , GTP Fosfo-Hidrolases/química , Humanos , Cinesinas/química , Cinesinas/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Miosinas/química , Miosinas/genética , Proteínas Quinases/química , Proteínas/síntese química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA