Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33452033

RESUMO

Metal contamination from mining or natural weathering is a common feature of surface waters in the American west. Advances in microbial analyses have created the potential for routine sampling of aquatic microbiomes as a tool to assess the quality of stream habitat. We sought to determine if microbiome diversity and membership were affected by metal contamination and identify candidate microbial taxa to be used to indicate metal stress in stream ecosystems. We evaluated microbiome membership from sediments at multiple sites within the principal drainage of an EPA superfund site near the headwaters of the Upper Arkansas River, Leadville, CO. From each sample, we extracted DNA and sequenced the 16S rRNA gene amplicon on the Illumina MiSeq platform. We used the remaining sediments to simultaneously evaluate environmental metal concentrations. We also conducted an artificial stream mesocosm experiment using sediments collected from two of the observational study sites. The mesocosm experiment had a two-by-two factorial design: (i) location (upstream or downstream of contaminating tributary), and (ii) treatment (metal exposure or control). We found no difference in diversity between upstream and downstream sites in the field. Similarly, diversity changed very little following experimental metal exposure. However, microbiome membership differed between upstream and downstream locations and experimental metal exposure changed microbiome membership in a manner that depended on origin of the sediments used in each mesocosm.IMPORTANCE Our results suggest that microbiomes can be reliable indicators of ecosystem metal stress even when surface water chemistry and other metrics used to assess ecosystem health do not indicate ecosystem stress. Results presented in this study, in combination with previously published work on this same ecosystem, are consistent with the idea that a microbial response to metals at the base of the food web may be affecting primary consumers. If effects of metals are mediated through shifts in the microbiome, then microbial metrics, as presented here, may aid in the assessment of stream ecosystem health, which currently does not include assessments of the microbiome.


Assuntos
Bactérias/isolamento & purificação , Metais/efeitos adversos , Microbiota/efeitos dos fármacos , Rios/microbiologia , Poluentes Químicos da Água/efeitos adversos , Colorado , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
2.
Arch Environ Contam Toxicol ; 72(2): 167-177, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064370

RESUMO

Partial decoupling of mercury (Hg) loading and observed Hg concentrations ([Hg]) in biotic and abiotic samples has been documented in aquatic systems. We studied two Colorado reservoirs to test whether shifts in prey for sport fish would lead to changes in [Hg] independent of external atmospheric Hg deposition. We compared sport fish total mercury concentrations ([T-Hg]) and macroinvertebrate (chironomids and crayfish) methylmercury concentrations ([MeHg]) before and after food web shifts occurred in both reservoirs. We also monitored wet atmospheric Hg deposition and sediment [T-Hg] and [MeHg] at each reservoir. We found rapid shifts in Hg bioaccumulation in each reservoir's sport fish, and these changes could not be attributed to atmospheric Hg deposition. Our study shows that trends in atmospheric deposition, environmental samples (e.g., sediments), and samples of species at the low trophic levels (e.g., chironomids and crayfish) may not accurately reflect conditions that result in fish consumption advisories for high trophic level sport fish. We suggest that in the short-term, monitoring fish [Hg] is necessary to adequately protect human health because natural and anthropogenic perturbations to aquatic food-webs that affect [Hg] in sport fish will continue regardless of trends in atmospheric deposition.


Assuntos
Exposição Ambiental , Peixes/metabolismo , Cadeia Alimentar , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Colorado , Monitoramento Ambiental , Chuva
3.
PLoS One ; 18(8): e0285890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37607193

RESUMO

Mercury (Hg) is a concerning contaminant due to its widespread distribution and tendency to accumulate to harmful concentrations in biota. We used a machine learning approach called random forest (RF) to test for different predictors of Hg concentrations in three species of Colorado reservoir sport fish. The RF approach indicated that the best predictors of 864 mm northern pike (Esox lucius) Hg concentrations were covariates related to salmonid stocking in each study system, while system-specific metrics related to productivity and forage base were the best predictors of Hg concentrations of 381 mm smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). Protecting human and ecological health from Hg contamination requires an understanding of fish Hg concentrations and variability across the landscape and through time. The RF approach could be applied to identify potential areas/systems of concern, and predict whether sport fish Hg concentrations may change as a result of a variety of factors to help prioritize, focus, and streamline monitoring efforts to effectively and efficiently inform human and ecological health.


Assuntos
Bass , Mercúrio , Percas , Salmonidae , Animais , Humanos , Esocidae
4.
Integr Environ Assess Manag ; 18(4): 1047-1055, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34427982

RESUMO

Quantifying the success of stream remediation or restoration projects that are designed to improve water quality or habitat, respectively, is often challenging because of insufficient posttreatment monitoring, poorly defined restoration goals, and failure to consider fundamental aspects of ecological theory. We measured the effects of habitat restoration on aquatic and terrestrial prey resources in a system recovering from the long-term effects of mining pollution. The study was conducted in the Upper Arkansas River, a Rocky Mountain stream located in central Colorado, USA. Remediation of California Gulch, a United States Environmental Protection Agency (USEPA) Superfund Site that discharged metals from past mining operations into the stream, was completed in 2000, resulting in significant improvements in water quality, benthic macroinvertebrate communities, and brown trout (Salmo trutta) populations. A large-scale restoration project designed to improve habitat and increase the density and biomass of brown trout was completed in 2014. To assess the effectiveness of these habitat improvements on invertebrate communities in this system, we sampled sites for 9 years before (2010-2014) and after (2015-2018) restoration was completed. In contrast to our expectations, we observed few changes in the abundance of aquatic or terrestrial invertebrates after restoration. The most common response was an overall reduction in abundance resulting from significant instream disturbances during and immediately after restoration, followed by a gradual return to pretreatment conditions. Despite reductions in prey abundance, the number of prey items in the diet of brown trout increased significantly after restoration. We discuss several explanations for these responses, including the effects of residual metals, increased predation by brown trout, and the recalcitrance of novel communities dominated by metal-tolerant species. Our results suggest that the effectiveness of remediation and restoration differed between macroinvertebrates and fish. Benthic macroinvertebrates were more dependent on water quality improvements at the watershed scale, whereas brown trout populations responded to both improvements in water quality and reach-scale improvements in habitat. Integr Environ Assess Manag 2022;18:1047-1055. © 2021 SETAC.


Assuntos
Ecossistema , Rios , Animais , Monitoramento Ambiental/métodos , Invertebrados/fisiologia , Metais , Truta/fisiologia
5.
Environ Toxicol Chem ; 38(11): 2486-2496, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31403735

RESUMO

Modernizing water quality criteria to predict how contaminants affect natural aquatic communities requires that we utilize data obtained across multiple lines of evidence, including laboratory, mesocosm, and field studies. We report the results of 29 mesocosm experiments conducted from 1994 to 2017 at the Colorado State University Stream Research Laboratory (Fort Collins, CO, USA). The primary goal of the present study was to quantify responses of aquatic insect communities collected from 8 different locations to different combinations of cadmium (Cd), copper (Cu), iron (Fe), and zinc (Zn). Treatments that included Cu or Fe, either alone or in combination with other metals, were especially toxic to aquatic insects. The results showed that effects of metals were context dependent and varied significantly among the 8 sites where communities were collected. In particular, effects on communities from smaller streams were significantly greater than those from larger streams. Our analyses also showed that several morphological (body size, shape, gills, degree of sclerotization) and life history (voltinism) traits were significantly correlated with sensitivity to metals. Across all taxa and experiments, aquatic insects broadly classified as small (maximum body length <8 mm) were significantly more sensitive to metals than medium or large individuals. These findings demonstrate the advantages of integrating results of mesocosm experiments with species traits to develop a mechanistic understanding of biotic and abiotic factors that influence community responses to contaminants. Environ Toxicol Chem 2019;38:2486-2496. © 2019 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Insetos/efeitos dos fármacos , Metais Pesados/toxicidade , Rios/química , Animais , Tamanho Corporal/efeitos dos fármacos , Colorado , Análise Discriminante , Modelos Lineares , Poluentes Químicos da Água/toxicidade , Qualidade da Água
6.
Sci Total Environ ; 506-507: 330-7, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460967

RESUMO

Mercury (Hg) is a persistent global contaminant that biomagnifies, often reaching maximum levels in apex predators. Mercury contamination in piscivorous fish is a serious health risk for anglers and other fish consumers. We used data collected from a reservoir in Colorado to develop bioenergetics-based simulations of Hg bioaccumulation to estimate Hg concentrations in walleye (Sander vitreus), a popular sport fish. We evaluated how changes in the prey available to walleye might affect walleye Hg concentrations. Our simulations showed that such changes could result in almost a 10-fold range in walleye Hg concentration. Walleye consuming invertebrates had low growth, low growth efficiency, and high Hg concentrations. Conversely, when walleye diet contained only fish prey their growth and growth efficiency were higher and Hg concentrations were about 85% lower. These predictions were consistent with independent measurements in the study system observed under two different prey regimes in 2008 and 2013. Because prey assemblages in freshwaters can exhibit high natural and anthropogenic variability, understanding variation in predator Hg and providing accurate fish consumption advice to anglers and their families will require frequent monitoring of both predator and prey species. Further, manipulation of prey assemblages is a routine fishery management strategy that could be applied to reduce Hg contamination in piscivorous fishes.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Colorado , Dieta/estatística & dados numéricos , Pesqueiros/estatística & dados numéricos , Cadeia Alimentar , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA