Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 7: 338, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16836750

RESUMO

BACKGROUND: With the advent of high-throughput proteomic experiments such as arrays of purified proteins comes the need to analyse sets of proteins as an ensemble, as opposed to the traditional one-protein-at-a-time approach. Although there are several publicly available tools that facilitate the analysis of protein sets, they do not display integrated results in an easily-interpreted image or do not allow the user to specify the proteins to be analysed. RESULTS: We developed a novel computational approach to analyse the annotation of sets of molecules. As proof of principle, we analysed two sets of proteins identified in published protein array screens. The distance between any two proteins was measured as the graph similarity between their Gene Ontology (GO) annotations. These distances were then clustered to highlight subsets of proteins sharing related GO annotation. In the first set of proteins found to bind small molecule inhibitors of rapamycin, we identified three subsets containing four or five proteins each that may help to elucidate how rapamycin affects cell growth whereas the original authors chose only one novel protein from the array results for further study. In a set of phosphoinositide-binding proteins, we identified subsets of proteins associated with different intracellular structures that were not highlighted by the analysis performed in the original publication. CONCLUSION: By determining the distances between annotations, our methodology reveals trends and enrichment of proteins of particular functions within high-throughput datasets at a higher sensitivity than perusal of end-point annotations. In an era of increasingly complex datasets, such tools will help in the formulation of new, testable hypotheses from high-throughput experimental data.


Assuntos
Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise Serial de Proteínas/métodos , Proteômica/métodos , Algoritmos , Animais , Proliferação de Células , Análise por Conglomerados , Interpretação Estatística de Dados , Proteínas Fúngicas/química , Fases de Leitura Aberta , Ligação Proteica , Análise de Sequência de Proteína , Sirolimo/antagonistas & inibidores
2.
BMC Bioinformatics ; 4: 11, 2003 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-12689350

RESUMO

BACKGROUND: The majority of experimentally verified molecular interaction and biological pathway data are present in the unstructured text of biomedical journal articles where they are inaccessible to computational methods. The Biomolecular interaction network database (BIND) seeks to capture these data in a machine-readable format. We hypothesized that the formidable task-size of backfilling the database could be reduced by using Support Vector Machine technology to first locate interaction information in the literature. We present an information extraction system that was designed to locate protein-protein interaction data in the literature and present these data to curators and the public for review and entry into BIND. RESULTS: Cross-validation estimated the support vector machine's test-set precision, accuracy and recall for classifying abstracts describing interaction information was 92%, 90% and 92% respectively. We estimated that the system would be able to recall up to 60% of all non-high throughput interactions present in another yeast-protein interaction database. Finally, this system was applied to a real-world curation problem and its use was found to reduce the task duration by 70% thus saving 176 days. CONCLUSIONS: Machine learning methods are useful as tools to direct interaction and pathway database back-filling; however, this potential can only be realized if these techniques are coupled with human review and entry into a factual database such as BIND. The PreBIND system described here is available to the public at http://bind.ca. Current capabilities allow searching for human, mouse and yeast protein-interaction information.


Assuntos
Inteligência Artificial , Armazenamento e Recuperação da Informação/tendências , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Bases de Dados Factuais/tendências , Bases de Dados de Proteínas/tendências , Genoma Fúngico , Mapeamento de Interação de Proteínas/classificação , Mapeamento de Interação de Proteínas/estatística & dados numéricos , PubMed/classificação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
3.
PLoS One ; 6(11): e26248, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22087225

RESUMO

PDZ (Post-synaptic density, 95 kDa, Discs large, Zona Occludens-1) domains are protein interaction domains that bind to the carboxy-terminal amino acids of binding partners, heterodimerize with other PDZ domains, and also bind phosphoinositides. PDZ domain containing proteins are frequently involved in the assembly of multi-protein complexes and clustering of transmembrane proteins. LNX1 (Ligand of Numb, protein X 1) is a RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligase that also includes four PDZ domains suggesting it functions as a scaffold for a multi-protein complex. Here we use a human protein array to identify direct LNX1 PDZ domain binding partners. Screening of 8,000 human proteins with isolated PDZ domains identified 53 potential LNX1 binding partners. We combined this set with LNX1 interacting proteins identified by other methods to assemble a list of 220 LNX1 interacting proteins. Bioinformatic analysis of this protein list was used to select interactions of interest for future studies. Using this approach we identify and confirm six novel LNX1 binding partners: KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2 and PBK, and suggest that LNX1 functions as a signalling scaffold.


Assuntos
Ubiquitina-Proteína Ligases/química , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Humanos , Domínios PDZ , Ligação Proteica , Mapeamento de Interação de Proteínas , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
4.
J Biol Chem ; 280(33): 29470-8, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15955809

RESUMO

Ubiquitin-protein ligases (E3s) are implicated in various human disorders and are attractive targets for therapeutic intervention. Although most cellular proteins are ubiquitinated, ubiquitination cannot be linked directly to a specific E3 for a large fraction of these proteins, and the substrates of most E3 enzymes are unknown. We have developed a luminescent assay to detect ubiquitination in vitro, which is more quantitative, effective, and sensitive than conventional ubiquitination assays. By taking advantage of the abundance of purified proteins made available by genomic efforts, we screened hundreds of purified yeast proteins for ubiquitination, and we identified previously reported and novel substrates of the yeast E3 ligase Rsp5. The relevance of these substrates was confirmed in vivo by showing that a number of them interact genetically with Rsp5, and some were ubiquitinated by Rsp5 in vivo. The combination of this sensitive assay and the availability of purified substrates will enable the identification of substrates for any purified E3 enzyme.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Medições Luminescentes
5.
EMBO J ; 21(1-2): 93-102, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11782429

RESUMO

LNX is a RING finger and PDZ domain containing protein that interacts with the cell fate determinant Numb. To investigate the function of LNX, we tested its RING finger domain for ubiquitin ligase activity. The isolated RING finger domain was able to function as an E2-dependent, E3 ubiquitin ligase in vitro and mutation of a conserved cysteine residue within the RING domain abolished its activity, indicating that LNX is the first described PDZ domain-containing member of the E3 ubiquitin ligase family. We have identified Numb as a substrate of LNX E3 activity in vitro and in vivo. In addition to the RING finger, a region of LNX, including the Numb PTB domain-binding site and the first PDZ domain, is required for Numb ubiquitylation. Expression of wild-type but not mutant LNX causes proteasome-dependent degradation of Numb and can enhance Notch signalling. These results suggest that the levels of mammalian Numb protein and therefore, by extension, the processes of asymmetric cell division and cell fate determination may be regulated by ubiquitin-dependent proteolysis.


Assuntos
Proteínas de Transporte/metabolismo , Ligases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Sítios de Ligação , Células CHO , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Cricetinae , Cães , Humanos , Ligases/genética , Proteínas de Membrana/genética , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases
6.
Nature ; 415(6868): 180-3, 2002 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-11805837

RESUMO

The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies. Given the high degree of connectivity observed in this study, even partial HMS-PCI coverage of complex proteomes, including that of humans, should allow comprehensive identification of cellular networks.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Clonagem Molecular , Dano ao DNA , Reparo do DNA , DNA Fúngico , Humanos , Substâncias Macromoleculares , Espectrometria de Massas , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteoma , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA