RESUMO
A major challenge in longitudinal built-environment health studies is the accuracy of commercial business databases that are used to characterize dynamic food environments. Different databases often provide conflicting exposure measures on the same subject due to different source credibilities. As on-site verification is not feasible for historical data, we suggest combining multiple databases to correct the bias in health effect estimates due to measurement error in any 1 datasource. We propose a joint model for the time-varying health outcomes, observed count exposures, and latent true count exposures. Our model estimates the time-specific quality of sources and incorporates time dependence of true count exposure by Poisson integer-valued first-order autoregressive process. We take a Bayesian nonparametric approach to flexibly account for location-specific exposures. By resolving the discordance between different databases, our method reduces the bias in the longitudinal health effect of the true exposures. Our method is demonstrated with childhood obesity data in California public schools with respect to convenience store exposures in school neighborhoods from 2001 to 2008.
Assuntos
Obesidade Infantil , Criança , Humanos , Teorema de Bayes , Bases de Dados Factuais , Instituições AcadêmicasRESUMO
The display quality of touchscreen devices with on-screen fingerprint sensors is reduced by moiré patterns, interference phenomena caused by an overlap between the pixel pattern of the display, and the electrode pattern of the fingerprint sensor. A promising strategy for resolving this issue is to reduce the visibility of the moiré pattern, by including a filling layer with a transmittance similar to that of the electrodes, between the different patterns. We propose a moiré-free fingerprint sensor that uses an oxide-metal-oxide (IZO/Ag/IZO) multilayer as a highly transparent electrode. To verify the moiré reduction effect, we conducted a two-dimensional spectral analysis to calculate the spatial frequencies of the superimposed image of the display and the sensor patterns, and demonstrated experimentally that the proposed electrode greatly reduces the undesirable moiré phenomenon.
RESUMO
Correction for 'Direct characterization of graphene doping state by in situ photoemission spectroscopy with Ar gas cluster ion beam sputtering' by Dong-Jin Yun et al., Phys. Chem. Chem. Phys., 2018, 20, 615-622.
RESUMO
On the basis of an in situ photoemission spectroscopy (PES) system, we propose a novel, direct diagnosis method for the characterization of graphene (Gr) doping states at organic semiconductor (OSC)/electrode interfaces. Our in situ PES system enables ultraviolet/X-ray photoelectron spectroscopy (UPS/XPS) measurements during the OSC growth or removal process. We directly deposit C60 films on three different p-type dopants-gold chloride (AuCl3), (trifluoromethyl-sulfonyl)imide (TFSI), and nitric acid (HNO3). We periodically characterize the chemical/electronic state changes of the C60/Gr structures during their aging processes under ambient conditions. Depositing the OSC on the p-type doped Gr also prevents severe degradation of the electrical properties, with almost negligible transition over one month, while the p-type doped Gr without an OSC changes a lot following one month of aging. Our results indicate that the chemical/electronic structures of the Gr layer are completely reflected in the energy level alignments at the C60/Gr interfaces. Therefore, we strongly believe that the variation of energy level alignments at the OSC/graphene interface is a key standard for determining the doping state of graphene after a certain period of aging.
RESUMO
We discuss the influence of V-pits and their energy barrier, originating from its facets of (101¯1) planes, on the luminescence efficiency of InGaN LEDs. Experimental analysis using cathodoluminescence (CL) exhibits that thin facets of V-pits of InGaN quantum wells (QWs) appear to be effective in improving the emission intensity, preventing the injected carriers from recombining non-radiatively with threading dislocations (TDs). Our theoretical calculation based on the self-consistent approach with adopting kâ p method reveals that higher V-pit energy barrier heights in InGaN QWs more efficiently suppress the non-radiative recombination at TDs, thus enhancing the internal quantum efficiency (IQE).
RESUMO
To synthesize a thermally robust Ni1-xPtxSi film suitable for ultrashallow junctions in advanced metal-oxide-semiconductor field-effect transistors, we used a continuous laser beam to carry out millisecond annealing (MSA) on a preformed Ni-rich silicide film at a local surface temperature above 1000 °C while heating the substrate to initiate a phase transition. The melting and quenching process by this unique high-temperature MSA process formed a Ni1-xPtxSi film with homogeneous Pt distribution across the entire film thickness. After additional substantial thermal treatment up to 800 °C, the noble Ni1-xPtxSi film maintained a low-resistive phase without agglomeration and even exhibited interface flattening with the underlying Si substrate.