Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMC Microbiol ; 24(1): 185, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802738

RESUMO

BACKGROUND: Schaalia species are primarily found among the oral microbiota of humans and other animals. They have been associated with various infections through their involvement in biofilm formation, modulation of host responses, and interaction with other microorganisms. In this study, two strains previously indicated as Actinomyces spp. were found to be novel members of the genus Schaalia based on their whole genome sequences. RESULTS: Whole-genome sequencing revealed both strains with a genome size of 2.3 Mbp and GC contents of 65.5%. Phylogenetics analysis for taxonomic placement revealed strains NCTC 9931 and C24 as distinct species within the genus Schaalia. Overall genome-relatedness indices including digital DNA-DNA hybridization (dDDH), and average nucleotide/amino acid identity (ANI/AAI) confirmed both strains as distinct species, with values below the species boundary thresholds (dDDH < 70%, and ANI and AAI < 95%) when compared to nearest type strain Schaalia odontolytica NCTC 9935 T. Pangenome and orthologous analyses highlighted their differences in gene properties and biological functions compared to existing type strains. Additionally, the identification of genomic islands (GIs) and virulence-associated factors indicated their genetic diversity and potential adaptive capabilities, as well as potential implications for human health. Notably, CRISPR-Cas systems in strain NCTC 9931 underscore its adaptive immune mechanisms compared to strain C24. CONCLUSIONS: Based on these findings, strain NCTC 9931T (= ATCC 17982T = DSM 43331T = CIP 104728T = CCUG 18309T = NCTC 14978T = CGMCC 1.90328T) represents a novel species, for which the name Schaalia dentiphila subsp. dentiphila sp. nov. subsp. nov. is proposed, while strain C24T (= NCTC 14980T = CGMCC 1.90329T) represents a distinct novel subspecies, for which the name Schaalia dentiphila subsp. denticola. subsp. nov. is proposed. This study enriches our understanding of the genomic diversity of Schaalia species and paves the way for further investigations into their roles in oral health. SIGNIFICANCE: This research reveals two Schaalia strains, NCTC 9931 T and C24T, as novel entities with distinct genomic features. Expanding the taxonomic framework of the genus Schaalia, this study offers a critical resource for probing the metabolic intricacies and resistance patterns of these bacteria. This work stands as a cornerstone for microbial taxonomy, paving the way for significant advances in clinical diagnostics.


Assuntos
Composição de Bases , Genoma Bacteriano , Boca , Filogenia , Humanos , Genoma Bacteriano/genética , Boca/microbiologia , Sequenciamento Completo do Genoma , DNA Bacteriano/genética , Ilhas Genômicas/genética , Hibridização de Ácido Nucleico
2.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220864

RESUMO

Nitric oxide (NO) is a key signaling molecule that regulates diverse biological processes in both animals and plants, including important roles in male gamete physiology. In plants, NO is generated in pollen tubes (PTs) and affects intracellular responses through the modulation of Ca2+ signaling, actin organization, vesicle trafficking and cell wall deposition, bearing consequences in pollen-stigma interactions and PT guidance. In contrast, the NO-responsive proteins that mediate these responses remain elusive. Here, we show that PTs of Arabidopsis thaliana mutants impaired in the pollen-specific DIACYLGLYCEROL KINASE4 (DGK4) grow slower and become partially insensitive to NO-dependent growth inhibition and re-orientation responses. Recombinant DGK4 protein yields NO-responsive spectral and catalytic changes in vitro that are compatible with a role in NO perception and signaling in PTs. In addition to the expected phosphatidic acid-producing kinase activity, DGK4 recombinant protein also revealed guanylyl cyclase activity, as inferred by sequence analysis. Our results are compatible with a role for the fast-diffusible NO gas in signaling and cell-cell communication via the modulation of DGK4 activity during the progamic phase of angiosperm reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Diacilglicerol Quinase/metabolismo , Fertilização/fisiologia , Óxido Nítrico/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Biocatálise , Diacilglicerol Quinase/química , Tubo Polínico/crescimento & desenvolvimento
3.
Bioinformatics ; 38(19): 4643-4644, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35993887

RESUMO

SUMMARY: HNOXPred is a webserver for the prediction of gas-sensing heme-nitric oxide/oxygen (H-NOX) proteins from amino acid sequence. H-NOX proteins are gas-sensing hemoproteins found in diverse organisms ranging from bacteria to eukaryotes. Recently, gas-sensing complex multi-functional proteins containing only the conserved amino acids at the heme centers of H-NOX proteins, have been identified through a motif-based approach. Based on experimental data and H-NOX candidates reported in the literature, HNOXPred is created to automate and facilitate the identification of similar H-NOX centers across systems. The server features HNOXSCORES scaled from 0 to 1 that consider in its calculation, the physicochemical properties of amino acids constituting the heme center in H-NOX in addition to the conserved amino acids within the center. From user input amino acid sequence, the server returns positive hits and their calculated HNOXSCORES ordered from high to low confidence which are accompanied by interpretation guides and recommendations. The utility of this server is demonstrated using the human proteome as an example. AVAILABILITY AND IMPLEMENTATION: The HNOXPred server is available at https://www.hnoxpred.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Hemeproteínas , Humanos , Hemeproteínas/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Sequência de Aminoácidos , Oxigênio/química , Oxigênio/metabolismo , Heme/química , Heme/metabolismo , Aminoácidos , NADPH Oxidases/metabolismo , Proteínas de Bactérias/metabolismo
4.
Plant Cell ; 32(1): 123-138, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712406

RESUMO

The lack of resolution when studying the many different ubiquitin chain types found in eukaryotic cells has been a major hurdle to our understanding of their specific roles. We currently have very little insight into the cellular and physiological functions of Lys-63 (K63)-linked ubiquitin chains, although they are the second most abundant forms of ubiquitin in plant cells. To overcome this problem, we developed several large-scale approaches to characterize (1) the E2-E3 ubiquitination machinery driving K63-linked ubiquitin chain formation and (2) K63 polyubiquitination targets to provide a comprehensive picture of K63 polyubiquitin networks in Arabidopsis (Arabidopsis thaliana). Our work identified the ubiquitin-conjugating enzymes (E2s) UBC35/36 as the major drivers of K63 polyubiquitin chain formation and highlights the major role of these proteins in plant growth and development. Interactome approaches allowed us to identify many proteins that interact with the K63 polyubiquitination-dedicated E2s UBC35/36 and their cognate E2 variants, including more than a dozen E3 ligases and their putative targets. In parallel, we improved the in vivo detection of proteins decorated with K63-linked ubiquitin chains by sensor-based proteomics, yielding important insights into the roles of K63 polyubiquitination in plant cells. This work strongly increases our understanding of K63 polyubiquitination networks and functions in plants.


Assuntos
Genômica , Lisina/metabolismo , Células Vegetais/metabolismo , Poliubiquitina/metabolismo , Proteômica , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Catalogação , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373523

RESUMO

Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma.


Assuntos
Ferroptose , Melanoma , Humanos , Apoptose/fisiologia , Morte Celular/fisiologia , Piroptose , Melanoma/tratamento farmacológico , Melanoma/patologia
6.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628641

RESUMO

Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].


Assuntos
Plantas , Transdução de Sinais , Plantas/genética
7.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499102

RESUMO

Melanoma is the most aggressive form of skin cancer, characterized by life-threatening and rapidly spreading progression. Traditional targeted therapy can alleviate tumors by inactivating hyperactive kinases such as BRAF or MEK but inevitably encounters drug resistance. The advent of immunotherapy has revolutionized melanoma treatment and significantly improved the prognosis of melanoma patients. MicroRNAs (miRNAs) are intricately involved in innate and adaptive immunity and are implicated in melanoma immunotherapy. This systematic review describes the roles of miRNAs in regulating the functions of immune cells in skin and melanoma, as well as the involvement of miRNAs in pharmacology including the effect, resistance and immune-related adverse events of checkpoint inhibitors such as PD-1 and CTLA-4 inhibitors, which are used for treating cutaneous, uveal and mucosal melanoma. The expressions and functions of miRNAs in immunotherapy employing tumor-infiltrating lymphocytes and Toll-like receptor 9 agonists are also discussed. The prospect of innovative therapeutic strategies such as the combined administration of miRNAs and immune checkpoint inhibitors and the nanotechnology-based delivery of miRNAs are also provided. A comprehensive understanding of the interplay between miRNAs and immunotherapy is crucial for the discovery of reliable biomarkers and for the development of novel miRNA-based therapeutics against melanoma.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia/métodos , Neoplasias Cutâneas/terapia , Terapia Combinada
8.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502563

RESUMO

In plants, rapid and reversible biological responses to environmental cues may require complex cellular reprograming. This is enabled by signaling molecules such as the cyclic nucleotide monophosphates (cNMPs) cAMP and cGMP, as well as Ca2+. While the roles and synthesis of cAMP and cGMP in plants are increasingly well-characterized, the "off signal" afforded by cNMP-degrading enzymes, the phosphodiesterases (PDEs), is, however, poorly understood, particularly so in monocots. Here, we identified a candidate PDE from the monocot Brachypodium distachyon (BDPDE1) and showed that it can hydrolyze cNMPs to 5'NMPs but with a preference for cAMP over cGMP in vitro. Notably, the PDE activity was significantly enhanced by Ca2+ only in the presence of calmodulin (CaM), which interacts with BDPDE1, most likely at a predicted CaM-binding site. Finally, based on our biochemical, mutagenesis and structural analyses, we constructed a comprehensive amino acid consensus sequence extracted from the catalytic centers of annotated and/or experimentally validated PDEs across species to enable a broad application of this search motif for the identification of similar active sites in eukaryotes and prokaryotes.


Assuntos
Brachypodium/enzimologia , Cálcio/metabolismo , Calmodulina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Brachypodium/genética , Domínio Catalítico , AMP Cíclico , GMP Cíclico/metabolismo , Guanosina Monofosfato/metabolismo , Hidrólise , Cinética , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
9.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200573

RESUMO

In recent years, cyclic guanosine 3',5'-cyclic monophosphate (cGMP) and guanylyl cyclases (GCs), which catalyze the formation of cGMP, were implicated in a growing number of plant processes, including plant growth and development and the responses to various stresses. To identify novel GCs in plants, an amino acid sequence of a catalytic motif with a conserved core was designed through bioinformatic analysis. In this report, we describe the performed analyses and consider the changes caused by the introduced modification within the GC catalytic motif, which eventually led to the description of a plasma membrane receptor of peptide signaling molecules-BdPepR2 in Brachypodium distachyon. Both in vitro GC activity studies and structural and docking analyses demonstrated that the protein could act as a GC and contains a highly conserved 14-aa GC catalytic center. However, we observed that in the case of BdPepR2, this catalytic center is altered where a methionine instead of the conserved lysine or arginine residues at position 14 of the motif, conferring higher catalytic activity than arginine and alanine, as confirmed through mutagenesis studies. This leads us to propose the expansion of the GC motif to cater for the identification of GCs in monocots. Additionally, we show that BdPepR2 also has in vitro kinase activity, which is modulated by cGMP.


Assuntos
Brachypodium/enzimologia , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Guanilato Ciclase/química , Guanilato Ciclase/genética , Técnicas In Vitro , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Homologia de Sequência , Transdução de Sinais
10.
Bioinformatics ; 34(12): 2134-2135, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29420675

RESUMO

Summary: GCPred is a webserver for the prediction of guanylyl cyclase (GC) functional centres from amino acid sequence. GCs are enzymes that generate the signalling molecule cyclic guanosine 3', 5'-monophosphate from guanosine-5'-triphosphate. A novel class of GC centres (GCCs) has been identified in complex plant proteins. Using currently available experimental data, GCPred is created to automate and facilitate the identification of similar GCCs. The server features GCC values that consider in its calculation, the physicochemical properties of amino acids constituting the GCC and the conserved amino acids within the centre. From user input amino acid sequence, the server returns a table of GCC values and graphs depicting deviations from mean values. The utility of this server is demonstrated using plant proteins and the human interleukin-1 receptor-associated kinase family of proteins as example. Availability and implementation: The GCPred server is available at http://gcpred.com. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Guanilato Ciclase/metabolismo , Análise de Sequência de Proteína/métodos , Software , Sequência de Aminoácidos , Domínio Catalítico , Computação em Nuvem , Guanilato Ciclase/química , Humanos , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia
11.
Molecules ; 24(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344907

RESUMO

In plants, much like in animals, nitric oxide (NO) has been established as an important gaseous signaling molecule. However, contrary to animal systems, NO-sensitive or NO-responsive proteins that bind NO in the form of a sensor or participating in redox reactions have remained elusive. Here, we applied a search term constructed based on conserved and functionally annotated amino acids at the centers of Heme Nitric Oxide/Oxygen (H-NOX) domains in annotated and experimentally-tested gas-binding proteins from lower and higher eukaryotes, in order to identify candidate NO-binding proteins in Arabidopsis thaliana. The selection of candidate NO-binding proteins identified from the motif search was supported by structural modeling. This approach identified AtLRB3 (At4g01160), a member of the Light Response Bric-a-Brac/Tramtrack/Broad Complex (BTB) family, as a candidate NO-binding protein. AtLRB3 was heterologously expressed and purified, and then tested for NO-response. Spectroscopic data confirmed that AtLRB3 contains a histidine-ligated heme cofactor and importantly, the addition of NO to AtLRB3 yielded absorption characteristics reminiscent of canonical H-NOX proteins. Furthermore, substitution of the heme iron-coordinating histidine at the H-NOX center with a leucine strongly impaired the NO-response. Our finding therefore established AtLRB3 as a NO-interacting protein and future characterizations will focus on resolving the nature of this response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Heme/química , Heme/metabolismo , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos , Óxido Nítrico/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Análise Espectral , Relação Estrutura-Atividade
12.
Plant J ; 91(4): 590-600, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28482142

RESUMO

The brassinosteroid receptor brassinosteroid insensitive 1 (BRI1) is a member of the leucine-rich repeat receptor-like kinase family. The intracellular kinase domain of BRI1 is an active kinase and also encapsulates a guanylate cyclase catalytic centre. Using liquid chromatography tandem mass spectrometry, we confirmed that the recombinant cytoplasmic domain of BRI1 generates pmol amounts of cGMP per µg protein with a preference for magnesium over manganese as a co-factor. Importantly, a functional BRI1 kinase is essential for optimal cGMP generation. Therefore, the guanylate cyclase activity of BRI1 is modulated by the kinase while cGMP, the product of the guanylate cyclase, in turn inhibits BRI1 kinase activity. Furthermore, we show using Arabidopsis root cell cultures that cGMP rapidly potentiates phosphorylation of the downstream substrate brassinosteroid signaling kinase 1 (BSK1). Taken together, our results suggest that cGMP acts as a modulator that enhances downstream signaling while dampening signal generation from the receptor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Brassinosteroides/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Modelos Biológicos , Modelos Estruturais , Mutação , Fosforilação , Folhas de Planta , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Nicotiana/genética , Nicotiana/fisiologia
13.
Handb Exp Pharmacol ; 238: 87-103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26721677

RESUMO

Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.


Assuntos
Nucleotídeos Cíclicos/metabolismo , Plantas/metabolismo , Sistemas do Segundo Mensageiro , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Catálise , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo , Relação Estrutura-Atividade
14.
Nutr J ; 14: 95, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26370532

RESUMO

BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.


Assuntos
Bactérias/efeitos dos fármacos , Suplementos Nutricionais , Farmacorresistência Bacteriana , Probióticos/análise , Aztreonam/farmacologia , Ciprofloxacina/farmacologia , Microbiologia de Alimentos , Gentamicinas/farmacologia , Lactobacillus/efeitos dos fármacos , Projetos Piloto , Estreptomicina/farmacologia , Vancomicina/farmacologia
15.
Int J Mol Sci ; 16(1): 857-70, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25561235

RESUMO

The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.


Assuntos
Arabidopsis/metabolismo , Eletroforese em Gel Bidimensional , Proteoma/análise , Espectrometria de Massas em Tandem , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Soluções Tampão , Detergentes/química , Processamento de Proteína Pós-Traducional , Solubilidade
16.
Heliyon ; 10(6): e27908, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510031

RESUMO

Probiotics have long been associated with a myriad of health benefits, so much so that their adverse effects whether mild or severe, are often neglected or overshadowed by the enormous volume of articles describing their beneficial effects in the current literature. Recent evidence has demonstrated several health risks of probiotics that warrant serious reconsideration of their applications and further investigations. This review aims to highlight studies that report on how probiotics might cause opportunistic systemic and local infections, detrimental immunological effects, metabolic disturbance, allergic reactions, and facilitating the spread of antimicrobial resistance. To offer a recent account of the literature, articles within the last five years were prioritized. The narration of these evidence was based on the nature of the studies in the following order of preference: clinical studies or human samples, in vivo or animal models, in situ, in vitro and/or in silico. We hope that this review will inform consumers, food scientists, and medical practitioners, on the health risks, while also encouraging research that will focus on and clarify the adverse effects of probiotics.

17.
Trends Plant Sci ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480090

RESUMO

Cyclic nucleotides 3',5'-cAMP and 3',5'-cGMP are now established signaling components of the plant cell while their 2',3' positional isomers are increasingly recognized as such. 3',5'-cAMP/cGMP is generated by adenylate cyclases (ACs) or guanylate cyclases (GCs) from ATP or GTP, respectively, whereas 2',3'-cAMP/cGMP is produced through the hydrolysis of double-stranded DNA or RNA by synthetases. Recent evidence suggests that the cyclic nucleotide generating and inactivating enzymes moonlight in proteins with diverse domain architecture operating as molecular tuners to enable dynamic and compartmentalized regulation of cellular signals. Further characterization of such moonlighting enzymes and extending the studies to noncanonical cyclic nucleotides promises new insights into the complex regulatory networks that underlie plant development and responses, thus offering exciting opportunities for crop improvement.

18.
Phytochemistry ; 224: 114146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763313

RESUMO

Metabolic processes in prokaryotic and eukaryotic organisms are often modulated by kinases which are in turn, dependent on Ca2+ and the cyclic mononucleotides cAMP and cGMP. It has been established that some proteins have both kinase and cyclase activities and that active cyclases can be embedded within the kinase domains. Here, we identified phosphodiesterase (PDE) sites, enzymes that hydrolyse cAMP and cGMP, to AMP and GMP, respectively, in some of these proteins in addition to their kinase/cyclase twin-architecture. As an example, we tested the Arabidopsis thaliana KINγ, a subunit of the SnRK2 kinase, to demonstrate that all three enzymatic centres, adenylate cyclase (AC), guanylate cyclase (GC) and PDE, are catalytically active, capable of generating and hydrolysing cAMP and cGMP. These data imply that the signal output of the KINγ subunit modulates SnRK2, consequently affecting the downstream kinome. Finally, we propose a model where a single protein subunit, KINγ, is capable of regulating cyclic mononucleotide homeostasis, thereby tuning stimulus specific signal output.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinases , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Arabidopsis/metabolismo
19.
Cell Commun Signal ; 11: 48, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23835195

RESUMO

BACKGROUND: Second messengers link external cues to complex physiological responses. One such messenger, 3',5'-cyclic guanosine monophosphate (cGMP), has been shown to play a key role in many physiological responses in plants. However, in higher plants, guanylyl cyclases (GCs), enzymes that generate cGMP from guanosine-5'-triphosphate (GTP) have remained elusive until recently. GC search motifs constructed from the alignment of known GCs catalytic centers form vertebrates and lower eukaryotes have led to the identification of a number of plant GCs that have been characterized in vitro and in vivo.Presentation of the hypothesis. Recently characterized GCs in Arabidopsis thaliana contributed to the development of search parameters that can identify novel candidate GCs in plants. We hypothesize that there are still a substantial number (> 40) of multi-domain molecules with potentially functional GC catalytic centers in plants that remain to be discovered and characterized. TESTING THE HYPOTHESIS: The hypothesis can be tested, firstly, by computational methods constructing 3D models of selected GC candidates using available crystal structures as templates. Homology modeling must include substrate docking that can provide support for the structural feasibility of the GC catalytic centers in those candidates. Secondly, recombinant peptides containing the GC domain need to be tested in in vitro GC assays such as the enzyme-linked immune-sorbent assay (ELISA) and/or in mass spectrometry based cGMP assays. In addition, quantification of in vivo cGMP transients with fluorescent cGMP-reporter assays in wild-type or selected mutants will help to elucidate the biological role of novel GCs. Implications of the hypothesis. If it turns out that plants do harbor a large number of functional GC domains as part of multi-domain enzymes, then major new insights will be gained into the complex signal transduction pathways that link cGMP to fundamental processes such as ion transport and homeostasis, biotic and abiotic stress responses as well as cGMP-dependent responses to hormones.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Guanilato Ciclase/metabolismo , Proteínas de Arabidopsis/química , Domínio Catalítico , GMP Cíclico/metabolismo , Guanosina Trifosfato/metabolismo , Guanilato Ciclase/química , Simulação de Acoplamento Molecular , Proteoma
20.
Comput Struct Biotechnol J ; 21: 326-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582434

RESUMO

Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA