Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37738460

RESUMO

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Assuntos
Histonas , Leucemia Mieloide Aguda , Animais , Camundongos , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Metilação , Nucleotidiltransferases/metabolismo , Leucemia Mieloide Aguda/patologia , Imunidade , Poliploidia
2.
Proc Natl Acad Sci U S A ; 119(32): e2119514119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914158

RESUMO

Deregulation of cell cycle is a typical feature of cancer cells. Normal cells rely on the strictly coordinated spindle assembly checkpoint (SAC) to maintain the genome integrity and survive. However, cancer cells could bypass this checkpoint mechanism. In this study, we showed the clinical relevance of threonine tyrosine kinase (TTK) protein kinase, a central regulator of the SAC, in hepatocellular carcinoma (HCC) and its potential as therapeutic target. Here, we reported that a newly developed, orally active small molecule inhibitor targeting TTK (CFI-402257) effectively suppressed HCC growth and induced highly aneuploid HCC cells, DNA damage, and micronuclei formation. We identified that CFI-402257 also induced cytosolic DNA, senescence-like response, and activated DDX41-STING cytosolic DNA sensing pathway to produce senescence-associated secretory phenotypes (SASPs) in HCC cells. These SASPs subsequently led to recruitment of different subsets of immune cells (natural killer cells, CD4+ T cells, and CD8+ T cells) for tumor clearance. Our mass cytometry data illustrated the dynamic changes in the tumor-infiltrating immune populations after treatment with CFI-402257. Further, CFI-402257 improved survival in HCC-bearing mice treated with anti-PD-1, suggesting the possibility of combination treatment with immune checkpoint inhibitors in HCC patients. In summary, our study characterized CFI-402257 as a potential therapeutic for HCC, both used as a single agent and in combination therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Pirazóis , Pirimidinas , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Matadoras Naturais/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico
3.
Hepatology ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051950

RESUMO

BACKGROUND AND AIMS: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC. APPROACH AND RESULTS: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC. CONCLUSIONS: Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.

4.
Hepatology ; 77(3): 729-744, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35302667

RESUMO

BACKGROUND AND AIMS: Prognosis of HCC remains poor due to lack of effective therapies. Immune checkpoint inhibitors (ICIs) have delayed response and are only effective in a subset of patients. Treatments that could effectively shrink the tumors within a short period of time are idealistic to be employed together with ICIs for durable tumor suppressive effects. HCC acquires increased tolerance to aneuploidy. The rapid division of HCC cells relies on centrosome duplication. In this study, we found that polo-like kinase 4 (PLK4), a centrosome duplication regulator, represents a therapeutic vulnerability in HCC. APPROACH AND RESULTS: An orally available PLK4 inhibitor, CFI-400945, potently suppressed proliferating HCC cells by perturbing centrosome duplication. CFI-400945 induced endoreplication without stopping DNA replication, causing severe aneuploidy, DNA damage, micronuclei formation, cytosolic DNA accumulation, and senescence. The cytosolic DNA accumulation elicited the DEAD box helicase 41-stimulator of interferon genes-interferon regulatory factor 3/7-NF-κß cytosolic DNA sensing pathway, thereby driving the transcription of senescence-associated secretory phenotypes, which recruit immune cells. CFI-400945 was evaluated in liver-specific p53/phosphatase and tensin homolog knockout mouse HCC models established by hydrodynamic tail vein injection. Tumor-infiltrated immune cells were analyzed. CFI-400945 significantly impeded HCC growth and increased infiltration of cluster of differentiation 4-positive (CD4 + ), CD8 + T cells, macrophages, and natural killer cells. Combination therapy of CFI-400945 with anti-programmed death-1 showed a tendency to improve HCC survival. CONCLUSIONS: We show that by targeting a centrosome regulator, PLK4, to activate the cytosolic DNA sensing-mediated immune response, CFI-400945 effectively restrained tumor progression through cell cycle inhibition and inducing antitumor immunity to achieve a durable suppressive effect even in late-stage mouse HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Aneuploidia , Carcinoma Hepatocelular/patologia , Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo
5.
J Hepatol ; 78(2): 376-389, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36455783

RESUMO

BACKGROUND & AIMS: Tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) are the only two classes of FDA-approved drugs for individuals with advanced hepatocellular carcinoma (HCC). While TKIs confer only modest survival benefits, ICIs have been associated with remarkable outcomes but only in the minority of patients who respond. Understanding the mechanisms that determine the efficacy of ICIs in HCC will help to stratify patients likely to respond to ICIs. This study aims to elucidate how genetic composition and specific oncogenic pathways regulate the immune composition of HCC, which directly affects response to ICIs. METHODS: A collection of mouse HCCs with genotypes that closely simulate the genetic composition found in human HCCs were established using genome-editing approaches involving the delivery of transposon and CRISPR-Cas9 systems by hydrodynamic tail vein injection. Mouse HCC tumors were analyzed by RNA-sequencing while tumor-infiltrating T cells were analyzed by flow cytometry and single-cell RNA-sequencing. RESULTS: Based on the CD8+ T cell-infiltration level, we characterized tumors with different genotypes into cold and hot tumors. Anti-PD-1 treatment had no effect in cold tumors but was greatly effective in hot tumors. As proof-of-concept, a cold tumor (Trp53KO/MYCOE) and a hot tumor (Keap1KO/MYCOE) were further characterized. Tumor-infiltrating CD8+ T cells from Keap1KO/MYCOE HCCs expressed higher levels of proinflammatory chemokines and exhibited enrichment of a progenitor exhausted CD8+ T-cell phenotype compared to those in Trp53KO/MYCOE HCCs. The TKI sorafenib sensitized Trp53KO/MYCOE HCCs to anti-PD-1 treatment. CONCLUSION: Single anti-PD-1 treatment appears to be effective in HCCs with genetic mutations driving hot tumors, while combined anti-PD-1 and sorafenib treatment may be more appropriate in HCCs with genetic mutations driving cold tumors. IMPACT AND IMPLICATIONS: Genetic alterations of different driver genes in mouse liver cancers are associated with tumor-infiltrating CD8+ T cells and anti-PD-1 response. Mouse HCCs with different genetic compositions can be grouped into hot and cold tumors based on the level of tumor-infiltrating CD8+ T cells. This study provides proof-of-concept evidence to show that hot tumors are responsive to anti-PD-1 treatment while cold tumors are more suitable for combined treatment with anti-PD-1 and sorafenib. Our study might help to guide the design of patient stratification systems for single or combined treatments involving anti-PD-1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Edição de Genes , Linfócitos T CD8-Positivos , Fator 2 Relacionado a NF-E2/genética , RNA/metabolismo
6.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979776

RESUMO

Skeletal muscle satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute or chronic injuries. The lineage progression of quiescent SC toward activation, proliferation, and differentiation during the regeneration is orchestrated by cascades of transcription factors (TFs). Here, we elucidate the function of TF Yin Yang1 (YY1) in muscle regeneration. Muscle-specific deletion of YY1 in embryonic muscle progenitors leads to severe deformity of diaphragm muscle formation, thus neonatal death. Inducible deletion of YY1 in SC almost completely blocks the acute damage-induced muscle repair and exacerbates the chronic injury-induced dystrophic phenotype. Examination of SC revealed that YY1 loss results in cell-autonomous defect in activation and proliferation. Mechanistic search revealed that YY1 binds and represses mitochondrial gene expression. Simultaneously, it also stabilizes Hif1α protein and activates Hif1α-mediated glycolytic genes to facilitate a metabolic reprogramming toward glycolysis which is needed for SC proliferation. Altogether, our findings have identified YY1 as a key regulator of SC metabolic reprogramming through its dual roles in modulating both mitochondrial and glycolytic pathways.


Assuntos
Reprogramação Celular/genética , Músculo Esquelético/fisiologia , Regeneração/genética , Células Satélites de Músculo Esquelético/fisiologia , Fator de Transcrição YY1/fisiologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Glicólise/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Desenvolvimento Muscular/genética , Cicatrização/genética
7.
J Hepatol ; 77(2): 383-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227773

RESUMO

BACKGROUND & AIMS: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS: EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS: Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.


Assuntos
Carcinoma Hepatocelular , Efrina-A3 , Neoplasias Hepáticas , Receptor EphA2 , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Efrina-A3/genética , Efrina-A3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Microambiente Tumoral
8.
Hepatology ; 74(4): 2264-2276, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33811765

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers because of late symptom manifestation leading to delayed diagnosis, which limits patients with HCC in terms of receiving curative surgical treatment. There are only a few therapeutic options for patients with advanced HCC. The emergence of immune checkpoint inhibitors (ICIs) brings HCC treatment to a stage at which nivolumab, an anti-programmed cell death protein 1 monoclonal antibody, achieves a 20% response rate. However, the large proportion of unresponsive patients drives the exploration of therapeutic strategies to improve ICIs' efficacy. Recent preclinical and clinical studies have suggested that ICIs, when used in combinations or when used with other cancer therapies, might elicit synergistic antitumor effects. However, the mechanistic rationales guiding different drug combinations to maximize this synergy remain largely ambiguous. In this review, we discuss different drug combinations used in HCC and the underlying mechanistic rationales, aiming to enhance the understanding of how these treatments can achieve synergy. This knowledge sets the foundation for the development of more effective and promising combination therapies for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Quimioterapia Combinada/métodos , Quimioterapia Combinada/tendências , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento
9.
Hepatology ; 74(2): 776-796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33619771

RESUMO

BACKGROUND AND AIMS: HCC undergoes active metabolic reprogramming. Reactive oxygen species (ROS) are excessively generated in cancer cells and are neutralized by NADPH. Malic enzymes (MEs) are the less studied NADPH producers in cancer. APPROACH AND RESULTS: We found that ME1, but not ME3, was regulated by the typical oxidative stress response pathway mediated by kelch-like ECH associated protein 1/nuclear factor erythroid 2-related factor (NRF2). Surprisingly, ME3 was constitutively induced by superenhancers. Disruption of any ME regulatory pathways decelerated HCC progression and sensitized HCC to sorafenib. Therapeutically, simultaneous blockade of NRF2 and a superenhancer complex completely impeded HCC growth. We show that superenhancers allow cancer cells to counteract the intrinsically high level of ROS through constitutively activating ME3 expression. When HCC cells encounter further episodes of ROS insult, NRF2 allows cancer cells to adapt by transcriptionally activating ME1. CONCLUSIONS: Our study reveals the complementary regulatory mechanisms which control MEs and provide cancer cells multiple layers of defense against oxidative stress. Targeting both regulatory mechanisms represents a potential therapeutic approach for HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Malato Desidrogenase/genética , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/genética , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hepatócitos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/genética , Malato Desidrogenase/metabolismo , Metabolômica , Camundongos , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Hepatol ; 74(2): 360-371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918955

RESUMO

BACKGROUND & AIMS: Mutational profiling of patient tumors has suggested that hepatocellular carcinoma (HCC) development is mainly driven by loss-of-function mutations in tumor suppressor genes. p90 ribosomal S6 kinase 2 (RSK2) functions as a direct downstream kinase of ERK1/2 and elevated RSK2 expression has been reported to support oncogenic functions in some cancers. We investigated if RSK2 was also dysregulated by inactivating mutations in cancers including HCC. METHODS: We performed exome sequencing and targeted DNA sequencing on HBV-associated HCCs to examine recurrent RSK2 mutations. The functional significance and mechanistic consequences of RSK2 mutations were examined in natural RSK2-null HCC cells, and RSK2-knockout HCC cells. The potential downstream pathways underlying RSK2 mutations were investigated by RNA sequencing, qRT-PCR and mass spectrometry. RESULTS: We detected recurrent somatic RSK2 mutations at a rate of 6.3% in our HCC cohorts and revealed that, among many cancer types, HCC was the cancer most commonly harboring RSK2 mutations. The RSK2 mutations were inactivating and associated with a more aggressive tumor phenotype. We found that, functionally, restoring RSK2 expression in natural RSK2-null HBV-positive Hep3B cells suppressed proliferation and migration in vitro and tumorigenicity in vivo. Mechanistically, RSK2-inactivating mutations attenuated a SOS1/2-dependent negative feedback loop, leading to the activation of MAPK signaling. Of note, this RSK2 mutation-mediated MAPK upregulation rendered HCC cells more sensitive to sorafenib, a first-line multi-kinase inhibitor for advanced HCC. Furthermore, such activation of MAPK signaling enhanced cholesterol biosynthesis-related gene expression in HCC cells. CONCLUSIONS: Our findings reveal the mechanistic and functional significance of RSK2-inactivating mutations in HCC. These inactivating mutations may serve as an alternative route to activate MAPK signaling and cholesterol metabolism in HCC. LAY SUMMARY: In this study, we identified and functionally characterized RSK2-inactivating mutations in human hepatocellular carcinoma and demonstrated their association with aggressive tumor behavior. Mutations in RSK2 drive signaling pathways with known oncogenic potential, leading to enhanced cholesterol biosynthesis and potentially sensitizing tumors to sorafenib treatment.


Assuntos
Carcinoma Hepatocelular , Colesterol , Neoplasias Hepáticas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Sequenciamento do Exoma
11.
Gastroenterology ; 159(2): 609-623, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275969

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors are effective in the treatment of some hepatocellular carcinomas (HCCs), but these tumors do not always respond to inhibitors of programmed cell death 1 (PDCD1, also called PD1). We investigated mechanisms of resistance of liver tumors in mice to infiltrating T cells. METHODS: Mice were given hydrodynamic tail vein injections of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) and transposon vectors to disrupt Trp53 and overexpress C-Myc (Trp53KO/C-MycOE mice). Pvrl1 and Pvrl3 were knocked down in Hepa1-6 cells by using short hairpin RNAs. Hepa1-6 cells were injected into livers of C57BL/6 mice; some mice were given intraperitoneal injections of antibodies against PD1, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), or CD8 before the cancer cells were injected. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and quantitative real-time polymerase chain reaction; tumors were analyzed by mass cytometry using markers to detect T cells and other lymphocytes. We obtained HCC and nontumorous liver tissues and clinical data from patients who underwent surgery in Hong Kong and analyzed the tissues by immunohistochemistry. RESULTS: Trp53KO/C-MycOE mice developed liver tumors in 3-5 weeks; injections of anti-PD1 did not slow tumor development. Tumors from mice given anti-PD1 had larger numbers of memory CD8+ T cells (CD44+CD62L-KLRG1int) and T cells that expressed PD1, lymphocyte activating 3 (LAG3), and TIGIT compared with mice not given the antibody. HCC tissues from patients had higher levels of PVRL1 messenger RNA and protein than nontumorous tissues. Increased PVRL1 was associated with shorter times of disease-free survival. Knockdown of Pvrl1 in Hepa1-6 cells caused them to form smaller tumors in mice, infiltrated by higher numbers of CD8+ T cells that expressed the inhibitory protein TIGIT; these effects were not observed in mice with depletion of CD8+ T cells. In Hepa1-6 cells, PVRL1 stabilized cell surface PVR, which interacted with TIGIT on CD8+ T cells; knockdown of Pvrl1 reduced cell-surface levels of PVR but not levels of Pvr messenger RNA. In Trp53KO/C-MycOE mice and mice with tumors grown from Hepa1-6 cells, injection of the combination of anti-PD1 and anti-TIGIT significantly reduced tumor growth, increased the ratio of cytotoxic to regulatory T cells in tumors, and prolonged survival. CONCLUSIONS: PVRL1, which is up-regulated by HCC cells, stabilizes cell surface PVR, which interacts with TIGIT, an inhibitory molecule on CD8+ effector memory T cells. This suppresses the ant-tumor immune response. Inhibitors of PVRL1/TIGIT, along with anti-PD1 might be developed for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nectinas/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Knockout , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Estabilidade Proteica , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Critérios de Avaliação de Resposta em Tumores Sólidos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima
12.
J Pathol ; 252(1): 65-76, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558942

RESUMO

Hepatocellular carcinoma (HCC) is a biologically aggressive cancer. Targeted therapy is in need to tackle challenges in the treatment perspective. A growing body of evidence suggests a promising role of pharmacological inhibition of PIM (proviral integration site for Moloney murine leukaemia virus) kinase in some human haematological and solid cancers. Yet to date, the potential application of PIM inhibitors in HCC is still largely unexplored. In the present study we investigated the pre-clinical efficacy of PIM inhibition as a therapeutic approach in HCC. Effects of PIM inhibitors on cell proliferation, migration, invasion, chemosensitivity, and self-renewal were examined in vitro. The effects of PIM inhibitors on tumour growth and chemoresistance in vivo were studied using xenograft mouse models. Potential downstream molecular mechanisms were elucidated by RNA sequencing (RNA-seq) of tumour tissues harvested from animal models. Our findings demonstrate that PIM inhibitors SGI-1776 and PIM447 reduced HCC proliferation, metastatic potential, and self-renewal in vitro. Results from in vivo experiments supported the role of PIM inhibition in suppressing of tumour growth and increasing chemosensitivity of HCC toward cisplatin and doxorubicin, the two commonly used chemotherapeutic agents in trans-arterial chemoembolisation (TACE) for HCC. RNA-seq analysis revealed downregulation of the MAPK/ERK pathway upon PIM inhibition in HCC cells. In addition, LOXL2 and ICAM1 were identified as potential downstream effectors. Taken together, PIM inhibitors demonstrated remarkable anti-tumourigenic effects in HCC in vitro and in vivo. PIM kinase inhibition is a potential approach to be exploited in formulating adjuvant therapy for HCC patients of different disease stages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Neoplasias Hepáticas/patologia , Camundongos , Invasividade Neoplásica/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Gut ; 69(2): 329-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31439637

RESUMO

OBJECTIVE: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS: We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION: In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Chaperonas de Histonas/fisiologia , Neoplasias Hepáticas/fisiopatologia , Estresse Oxidativo/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/prevenção & controle , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Inativação de Genes/métodos , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Proteínas de Grupo de Alta Mobilidade/biossíntese , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/fisiopatologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição/antagonistas & inibidores , Fatores de Elongação da Transcrição/biossíntese , Fatores de Elongação da Transcrição/genética , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Hepatology ; 69(6): 2502-2517, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30723918

RESUMO

Hepatocellular carcinoma (HCC) cells exploit an aberrant transcriptional program to sustain their infinite growth and progression. Emerging evidence indicates that the continuous and robust transcription of oncogenes in cancer cells is often driven by super-enhancers (SEs). In this study, we systematically compared the SE landscapes between normal liver and HCC cells and revealed that the cis-acting SE landscape was extensively reprogrammed during liver carcinogenesis. HCC cells acquired SEs at multiple prominent oncogenes to drive their vigorous expression. We identified sphingosine kinase 1 (SPHK1) as an SE-associated oncogene, and we used this gene as an example to illustrate the impact of SEs on the activation of oncogenes in HCC. Concurrently, we also showed that the critical components of the trans-acting SE complex, namely, cyclin-dependent kinase 7 (CDK7), bromodomain-containing protein 4 (BRD4), E1A binding protein P300 (EP300), and mediator complex subunit 1 (MED1), were frequently overexpressed in human HCCs and were associated with the poor prognosis of patients with HCC. Using the CRISPR/Cas9 gene-editing system and specific small-molecule inhibitors, we further demonstrated that HCC cells were highly sensitive to perturbations of the SE complex. The inactivation of CDK7, BRD4, EP300, and MED1 selectively repressed the expression of SE-associated oncogenes in HCC. Finally, we demonstrated that THZ1, which is a small-molecule inhibitor of CDK7, exerted a prominent anticancer effect in both in vitro and in vivo HCC models. Conclusion: The SE landscape and machinery were significantly altered in human HCCs. HCC cells are highly susceptible to perturbations of the SE complex due to the resulting selective suppression of SE-associated oncogenes. Our results suggest that targeting SE complex is a promising therapeutic strategy for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Distribuição de Qui-Quadrado , Proteína p300 Associada a E1A/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Prognóstico , RNA Mensageiro/genética , Medição de Risco , Estatísticas não Paramétricas , Análise de Sobrevida , Fatores de Transcrição/genética , Pesquisa Translacional Biomédica , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/fisiologia
16.
Hepatology ; 69(5): 2013-2030, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30516846

RESUMO

Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid-specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up-regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain-of-function and loss-of-function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome-free region (NFR) at the transcription start site. Though this mechanism, up-regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E-cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.


Assuntos
Carcinoma Hepatocelular/enzimologia , DNA Helicases/metabolismo , Neoplasias Hepáticas Experimentais/enzimologia , Nucleossomos/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas Experimentais/etiologia , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica , Fator de Transcrição Sp1/metabolismo
17.
Hepatology ; 69(4): 1768-1786, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30561826

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide which lacks effective treatment. Cancer cells experience high levels of oxidative stress due to increased generation of reactive oxygen species (ROS). Increased antioxidant-producing capacity is therefore found in cancer cells to counteract oxidative stress. The thioredoxin system is a ubiquitous mammalian antioxidant system which scavenges ROS, and we demonstrate that it is vital for HCC growth as it maintains intracellular reduction-oxidation (redox) homeostasis. Transcriptome sequencing in human HCC samples revealed significant overexpression of thioredoxin reductase 1 (TXNRD1), the cytosolic subunit and key enzyme of the thioredoxin system, with significant correlations to poorer clinicopathological features and patient survival. Driven by the transcriptional activation of nuclear factor (erythroid-derived 2)-like 2, the master protector against oxidative stress, TXNRD1 counteracts intracellular ROS produced in human HCC. Inhibition of TXNRD1 through genetic inhibition hindered the proliferation of HCC cells and induced apoptosis in vitro. Administration of the pharmacological TXNRD1 inhibitor auranofin (AUR) effectively suppressed the growth of HCC tumors induced using the hydrodynamic tail vein injection and orthotopic implantation models in vivo. Furthermore, AUR sensitized HCC cells toward the conventional therapeutic sorafenib. Conclusion: Our study highlights the reliance of HCC cells on antioxidants for redox homeostasis and growth advantage; targeting TXNRD1 resulted in dramatic accumulation of ROS, which was found to be an effective approach for the suppression of HCC tumor growth.


Assuntos
Auranofina/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxina Redutase 1/metabolismo , Animais , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Sorafenibe/uso terapêutico , Tiorredoxina Redutase 1/antagonistas & inibidores
19.
Hepatology ; 67(6): 2254-2270, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29171881

RESUMO

Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway. CONCLUSION: METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Metiltransferases/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Carcinoma Hepatocelular/enzimologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/enzimologia , Camundongos
20.
Adv Exp Med Biol ; 1136: 97-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31201719

RESUMO

Metastasis is considered the latest stage of cancer development; however, metastasis occurs earlier than it can be detected. Metastatic sites are actively remodeled by secretory factors including growth factors, chemokines and cytokines, extracellular matrix (ECM) enzymes, and exosomes produced by the primary cancer tissues. Many of the associated-secretory factors are abundantly induced by inflammation and hypoxia. These secretory factors modify the ECM, immune composition, and blood vessel permeability of the future metastatic sites, a process termed 'metastatic niche formation.' In general, ECM is modified to enhance the attachment of other cell types or cancer cells to establish a growth-factor rich metastatic niche. Immune-suppressive cells such as tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) dominate the metastatic niche to allow metastatic cancer cells to bypass immune surveillance and propagate. Endothelial cell-to-cell junctions of blood vessels are loosened to enhance the penetrance of metastatic cancer cells to the metastatic sites. Different metastatic tissues have unique ECM constituents, resident immune cells, and anatomical positions linked with the circulatory system; therefore, many cancer types have their own metastatic pattern, and they favor metastasis to specific organs. Some of the remodeling events represent the earliest step of metastasis, even preceding the detachment of cancer cells from the primary tumor site. Understanding how the metastatic niche is formed is important for the development of drugs to prevent the earliest step of metastasis and advance our understanding of organotrophic metastasis. This review summarizes the major findings in the field of metastatic niche highlighting the role of hypoxia.


Assuntos
Metástase Neoplásica/patologia , Neoplasias/patologia , Hipóxia Tumoral , Microambiente Tumoral , Humanos , Vigilância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA