Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 139: 111-120, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35431138

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Proteínas Nogo/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética
2.
EMBO J ; 40(2): e104450, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258176

RESUMO

A prevalent model of Alzheimer's disease (AD) pathogenesis postulates the generation of neurotoxic fragments derived from the amyloid precursor protein (APP) after its internalization to endocytic compartments. The molecular pathways that regulate APP internalization and intracellular trafficking in neurons are incompletely understood. Here, we report that 5xFAD mice, an animal model of AD, expressing signaling-deficient variants of the p75 neurotrophin receptor (p75NTR ) show greater neuroprotection from AD neuropathology than animals lacking this receptor. p75NTR knock-in mice lacking the death domain or transmembrane Cys259 showed lower levels of Aß species, amyloid plaque burden, gliosis, mitochondrial stress, and neurite dystrophy than global knock-outs. Strikingly, long-term synaptic plasticity and memory, which are completely disrupted in 5xFAD mice, were fully recovered in the knock-in mice. Mechanistically, we found that p75NTR interacts with APP at the plasma membrane and regulates its internalization and intracellular trafficking in hippocampal neurons. Inactive p75NTR variants internalized considerably slower than wild-type p75NTR and showed increased association with the recycling pathway, thereby reducing APP internalization and co-localization with BACE1, the critical protease for generation of neurotoxic APP fragments, favoring non-amyloidogenic APP cleavage. These results reveal a novel pathway that directly and specifically regulates APP internalization, amyloidogenic processing, and disease progression, and suggest that inhibitors targeting the p75NTR transmembrane domain may be an effective therapeutic strategy in AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico/fisiologia , Receptores de Fator de Crescimento Neural/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/metabolismo , Neurônios/metabolismo , Placa Amiloide/metabolismo , Receptores de Morte Celular/metabolismo
3.
FASEB J ; 37(8): e23067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401900

RESUMO

Age-induced impairments in learning and memory are in part caused by changes to hippocampal synaptic plasticity during aging. The p75 neurotrophin receptor (p75NTR ) and mechanistic target of rapamycin (mTOR) are implicated in synaptic plasticity processes. mTOR is also well known for its involvement in aging. Recently, p75NTR and mTOR were shown to be mechanistically linked, and that p75NTR mediates age-induced impairment of hippocampal synaptic plasticity. Yet the consequences of p75NTR -mTOR interaction on hippocampal synaptic plasticity, and the role of mTOR in age-induced cognitive decline, are unclear. In this study, we utilize field electrophysiology to study the effects of mTOR inhibition and activation on long-term potentiation (LTP) in male young and aged wild-type (WT) mice. We then repeated the experiments on p75NTR knockout mice. The results demonstrate that mTOR inhibition blocks late-LTP in young WT mice but rescues age-related late-LTP impairment in aged WT mice. mTOR activation suppresses late-LTP in aged WT mice while lacking observable effects on young WT mice. These effects were not observed in p75NTR knockout mice. These results demonstrate that the role of mTOR in hippocampal synaptic plasticity is distinct between young and aged mice. Such effects could be explained by differing sensitivity of young and aged hippocampal neurons to changes in protein synthesis or autophagic activity levels. Additionally, elevated mTOR in the aged hippocampus could cause excessive mTOR signaling, which is worsened by activation and alleviated by inhibition. Further research on mTOR and p75NTR may prove useful for advancing understanding and, ultimately, mitigation of age-induced cognitive decline.


Assuntos
Plasticidade Neuronal , Neurônios , Animais , Masculino , Camundongos , Envelhecimento , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Psychiatry ; 28(3): 1312-1326, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577843

RESUMO

We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aß1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Hidroxicloroquina/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Camundongos Transgênicos , Fenótipo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
5.
Cereb Cortex ; 33(3): 676-690, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253866

RESUMO

The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Plasticidade Neuronal , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Tonsila do Cerebelo/fisiologia , Estimulação Elétrica
6.
EMBO J ; 38(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692134

RESUMO

Aberrant function of the RNA-binding protein TDP-43 has been causally linked to multiple neurodegenerative diseases. Due to its large number of targets, the mechanisms through which TDP-43 malfunction cause disease are unclear. Here, we report that knockdown, aggregation, or disease-associated mutation of TDP-43 all impair intracellular sorting and activity-dependent secretion of the neurotrophin brain-derived neurotrophic factor (BDNF) through altered splicing of the trafficking receptor Sortilin. Adult mice lacking TDP-43 specifically in hippocampal CA1 show memory impairment and synaptic plasticity defects that can be rescued by restoring Sortilin splicing or extracellular BDNF. Human neurons derived from patient iPSCs carrying mutated TDP-43 also show altered Sortilin splicing and reduced levels of activity-dependent BDNF secretion, which can be restored by correcting the mutation. We propose that major disease phenotypes caused by aberrant TDP-43 activity may be explained by the abnormal function of a handful of critical proteins, such as BDNF.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos Cognitivos/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Plasticidade Neuronal , Splicing de RNA , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Neurônios/metabolismo , Neurônios/patologia
7.
Adv Physiol Educ ; 47(2): 215-221, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825624

RESUMO

Practical classes are critical instructional activities in facilitating learning and motivation in health sciences education. With increasing pedagogical activities being conducted in virtual or remote settings, this study assessed how a remote practical assisted by physiological monitoring smartphone applications impacted student motivation and the achievement of intended learning outcomes in exercise physiology teaching. A total of 24 students (out of 30; 80%) were surveyed via a mixed-methods questionnaire containing 27 closed-ended, and 3 the traditional in-class practical in randomized order. Unpaired Student's t tests were performed for comparisons between interventions with a significance level set at P < 0.05. Students reported that both remote and in-class practicals strongly facilitated the achievement of learning outcomes. Self-reported scores for student satisfaction and perceived achievement of learning outcomes were similar between the two practical methodologies. Student motivation scores assessed using the Lab Motivation Scale revealed that students were more motivated during the remote practical, particularly in the effort domain (P < 0.05). This was in line with the identified themes from the qualitative responses that indicated that the remote practical was more engaging than the in-person practical, with greater opportunities for experiential learning and class involvement being the main factors underlying these findings. Taken together, remote practicals can be critical aspects of a blended learning curriculum that encourages student engagement and experiential learning. With further advancements in physiological monitoring wearables and smartphone technologies, remote practicals can be potential alternatives to traditional in-person practicals in exercise physiology teaching.NEW & NOTEWORTHY Remote practical classes, supported by physiological monitoring smartphone applications, were assessed for their utility in facilitating learning and raising student motivation in health sciences education in this study. A comparison of remote practicals with traditional in-class practicals revealed that a remote practical is an effective method for reinforcing physiology learning objectives with the added advantage of increased student motivation. The added value of remote practicals may be attributed to more experiential learning opportunities and increased engagement levels.


Assuntos
Aplicativos Móveis , Motivação , Humanos , Aprendizagem Baseada em Problemas , Aprendizagem , Estudantes
8.
Front Neuroendocrinol ; 59: 100857, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32781194

RESUMO

The blood-brain barrier (BBB) tightly controls the molecular exchange between the brain parenchyma and blood. Accumulated evidence from transgenic animal Alzheimer's disease (AD) models and human AD patients have demonstrated that BBB dysfunction is a major player in AD pathology. In this review, we discuss the role of the BBB in maintaining brain integrity and how this is mediated by crosstalk between BBB-associated cells within the neurovascular unit (NVU). We then discuss the role of the NVU, in particular its endothelial cell, pericyte, and glial cell constituents, in AD pathogenesis. The effect of substances released by the neuroendocrine system in modulating BBB function and AD pathogenesis is also discussed. We perform a systematic review of currently available AD treatments specifically targeting pericytes and BBB glial cells. In summary, this review provides a comprehensive overview of BBB dysfunction in AD and a new perspective on the development of therapeutics for AD.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Pericitos/patologia , Animais , Humanos
9.
Cereb Cortex ; 30(7): 4169-4182, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188968

RESUMO

Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.


Assuntos
Associação , Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Privação do Sono/genética , Vorinostat/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/efeitos dos fármacos , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Privação do Sono/fisiopatologia
10.
J Neurosci ; 39(28): 5452-5465, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31085607

RESUMO

Sleep deprivation (SD) interferes with hippocampal structural and functional plasticity, formation of long-term memory and cognitive function. The molecular mechanisms underlying these effects are incompletely understood. Here, we show that SD impaired synaptic tagging and capture and behavioral tagging, two major mechanisms of associative learning and memory. Strikingly, mutant male mice lacking the p75 neurotrophin receptor (p75NTR) were resistant to the detrimental effects of SD on hippocampal plasticity at both cellular and behavioral levels. Mechanistically, SD increased p75NTR expression and its interaction with phosphodiesterase. p75NTR deletion preserved hippocampal structural and functional plasticity by preventing SD-mediated effects on hippocampal cAMP-CREB-BDNF, cAMP-PKA-LIMK1-cofilin, and RhoA-ROCK2 pathways. Our study identifies p75NTR as an important mediator of hippocampal structural and functional changes associated with SD, and suggests that targeting p75NTR could be a promising strategy to limit the memory and cognitive deficits that accompany sleep loss.SIGNIFICANCE STATEMENT The lack of sufficient sleep is a major health concern in today's world. Sleep deprivation (SD) affects cognitive functions such as memory. We have investigated how associative memory mechanisms, synaptic tagging and capture (STC), was impaired in SD mice at cellular and behavioral level. Interestingly, mutant male mice that lacked the p75 neurotrophin receptor (p75NTR) were seen to be resistant to the SD-induced impairments in hippocampal synaptic plasticity and STC. Additionally, we elucidated the molecular pathways responsible for this rescue of plasticity in the mutant mice. Our study has thus identified p75NTR as a promising target to limit the cognitive deficits associated with SD.


Assuntos
Hipocampo/metabolismo , Memória , Plasticidade Neuronal , Receptores de Fator de Crescimento Neural/metabolismo , Privação do Sono/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinases Lim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
J Neurochem ; 134(5): 819-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26016529

RESUMO

GABAA receptors are pentameric ligand-gated ion channels that mediate inhibitory fast synaptic transmission in the central nervous system. Consistent with recent pentameric ligand-gated ion channels structures, sequence analysis predicts an α-helix near the N-terminus of each GABAA receptor subunit. Preceding each α-helix are 8-36 additional residues, which we term the N-terminal extension. In homomeric GABAC receptors and nicotinic acetylcholine receptors, the N-terminal α-helix is functionally essential. Here, we determined the role of the N-terminal extension and putative α-helix in heteromeric α1ß2γ2 GABAA receptors. This role was most prominent in the α1 subunit, with deletion of the N-terminal extension or further deletion of the putative α-helix both dramatically reduced the number of functional receptors at the cell surface. Conversely, deletion of the ß2 or γ2 N-terminal extension had little effect on the number of functional cell surface receptors. Additional deletion of the putative α-helix in the ß2 or γ2 subunits did, however, decrease both functional cell surface receptors and incorporation of the γ2 subunit into mature receptors. In the ß2 subunit only, α-helix deletions affected GABA sensitivity and desensitization. Our findings demonstrate that N-terminal extensions and α-helices make key subunit-specific contributions to assembly, consistent with both regions being involved in inter-subunit interactions. N-terminal α-helices and preceding sequences of eukaryotic pentameric ligand-gated ion channels are absent in prokaryotic homologues, suggesting they may not be functionally essential. Here, we show that in heteropentameric α1ß2γ2 GABAA receptors, the role of these segments is highly subunit dependent. The extension preceding the α-helix in the α subunit is crucial for assembly and trafficking, but is of little importance in ß and γ subunits. Indeed, robust receptor levels remain when the extension and α-helix are removed in ß or γ subunits.


Assuntos
Receptores de GABA-A/fisiologia , Sequência de Aminoácidos , Sequência Consenso , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Transporte Proteico , Receptores de GABA-A/química , Receptores de GABA-A/deficiência , Receptores de GABA-A/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Transmissão Sináptica/fisiologia , Zinco/farmacologia , Ácido gama-Aminobutírico/farmacologia
13.
Oxf Open Neurosci ; 1: kvac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38596711

RESUMO

Synaptic plasticity in the hippocampal Cornu Ammonis (CA) subfield, CA2, is tightly regulated. However, CA2 receives projections from several extra-hippocampal modulatory nuclei that release modulators that could serve to fine-tune plasticity at CA2 synapses. Considering that there are afferent projections from the serotonergic median raphe to hippocampal CA2, we hypothesized that the neuromodulator serotonin (5-hydroxytryptamine; 5-HT) could modulate CA2 synaptic plasticity. Here, we show that bath-application of serotonin facilitates the persistence of long-term depression (LTD) at the CA3 Schaffer collateral inputs to CA2 neurons (SC-CA2) when coupled to a weak low frequency electrical stimulation, in acute rat hippocampal slices. The observed late-LTD at SC-CA2 synapses was protein synthesis- and N-methyl-D-aspartate receptor (NMDAR)-dependent. Moreover, this late-LTD at SC-CA2 synapses paves way for the associative persistence of transient forms of LTD as well as long-term potentiation to long-lasting late forms of plasticity through synaptic tagging and cross-tagging respectively, at the entorhinal cortical synapses of CA2. We further observe that the 5-HT-mediated persistence of activity-dependent LTD at SC-CA2 synapses is blocked in the presence of the brain-derived neurotrophic factor scavenger, TrkB/Fc.

14.
Ageing Res Rev ; 75: 101567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051645

RESUMO

Aging and age-related neurodegenerative diseases have become one of the major concerns in modern times as cognitive abilities tend to decline when we get older. It is well known that the main cause of this age-related cognitive deficit is due to aberrant changes in cellular, molecular circuitry and signaling pathways underlying synaptic plasticity and neuronal connections. The p75 neurotrophin receptor (p75NTR) is one of the important mediators regulating the fate of the neurons in the nervous system. Its importance in neuronal apoptosis is well documented. However, the mechanisms involving the regulation of p75NTR in synaptic plasticity and cognitive function remain obscure, although cognitive impairment has been associated with a higher expression of p75NTR in neurons. In this review, we discuss the current understanding of how neurons are influenced by p75NTR function to maintain normal neuronal synaptic strength and connectivity, particularly to support learning and memory in the hippocampus. We then discuss the age-associated alterations in neurophysiological mechanisms of synaptic plasticity and cognitive function. Furthermore, we also describe current evidence that has begun to elucidate how p75NTR regulates synaptic changes in aging and age-related neurodegenerative diseases, focusing on the hippocampus. Elucidating the role that p75NTR signaling plays in regulating synaptic plasticity will contribute to a better understanding of cognitive processes and pathological conditions. This will in turn provide novel approaches to improve therapies for the treatment of neurological diseases in which p75NTR dysfunction has been demonstrated.


Assuntos
Doenças Neurodegenerativas , Receptor de Fator de Crescimento Neural , Envelhecimento , Animais , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
15.
Aging Cell ; 20(2): e13305, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448137

RESUMO

The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal-dependent long-term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age-related decline. The p75 neurotrophin receptor (p75NTR ) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age-related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age-associated changes in long-term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age-dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA-ROCK2-LIMK1-cofilin. p75NTR may thus represent an important therapeutic target for limiting the age-related memory and cognitive function deficits.


Assuntos
Envelhecimento , Hipocampo/metabolismo , Memória , Plasticidade Neuronal , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Fator de Crescimento Neural/deficiência
16.
Front Immunol ; 10: 1411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297111

RESUMO

The CD137-CD137 ligand (CD137L) costimulatory system is a critical immune checkpoint with pathophysiological implications in autoimmunity. In this study, we investigated the role of CD137L-mediated costimulation on renal, cutaneous and cerebral manifestations in lupus and the underlying immunological mechanism. Lupus-prone C57BL/6lpr-/- (B6.lpr) mice were crossed to C57BL/6.CD137L-/- mice to obtain CD137L-deficient B6.lpr [double knock out (DKO)] mice. We investigated the extent of survival, glomerulonephritis, skin lesions, cerebral demyelination, immune deviation and long-term synaptic plasticity among the two mouse groups. Cytokine levels, frequency of splenic leukocyte subsets and phenotypes were compared between DKO, B6.lpr and B6.WT mice. A 22 month observation of 226 DKO and 137 B6.lpr mice demonstrated significantly more frequent proliferative glomerulonephritis, larger skin lesions and shorter survival in DKO than in B6.lpr mice. Conversely, microglial activation and cerebral demyelination were less pronounced while long-term synaptic plasticity, was superior in DKO mice. Splenic Th17 cells were significantly higher in DKO than in B6.lpr and B6.WT mice while Th1 and Th2 cell frequencies were comparable between DKO and B6.lpr mice. IL-10 and IL-17 expression by T cells was not affected but there were fewer IL-10-producing myeloid (CD11b+) cells, and also lower serum IL-10 levels in DKO than in B6.lpr mice. The absence of CD137L causes an immune deviation toward Th17, fewer IL-10-producing CD11b+ cells and reduced serum IL-10 levels which potentially explain the more severe lupus in DKO mice while leading to reduced microglia activation, lesser cerebral damage and less severe neurological deficits.


Assuntos
Ligante 4-1BB/deficiência , Encéfalo/imunologia , Rim/imunologia , Nefrite Lúpica/imunologia , Pele/imunologia , Ligante 4-1BB/imunologia , Animais , Encéfalo/patologia , Deleção de Genes , Interleucina-10/genética , Interleucina-10/imunologia , Rim/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Camundongos , Camundongos Knockout , Pele/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia
17.
ACS Chem Neurosci ; 5(12): 1266-77, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25347026

RESUMO

The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a ß sandwich of ten ß-strands, which form the agonist-binding pocket at the subunit interface. This ß-sandwich is preceded by an N-terminal α-helix in eukaryotic structures but not in prokaryotic structures. The N-terminal α-helix has been shown to be functionally essential in α7 nicotinic acetylcholine receptors. Sequence analysis of GABAC and GABAA receptors predicts an α-helix in a similar position but preceded by 8 to 46 additional residues, of unknown function, which we term the N-terminal extension. To test the functional role of both the N-terminal extension and the putative N-terminal α-helix in the ρ1 GABAC receptor, we created a series of deletions from the N-terminus. The N-terminal extension was not functionally essential, but its removal did reduce both cell surface expression and cooperativity of agonist-gated channel function. Further deletion of the putative N-terminal α-helix abolished receptor function by preventing cell-surface expression. Our results further demonstrate the essential role of the N-terminal α-helix in the assembly and trafficking of eukaryotic pLGICs. They also provide evidence that the N-terminal extension, although not essential, contributes to receptor assembly, trafficking and conformational changes associated with ligand gating.


Assuntos
Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de GABA/química , Receptores de GABA/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células HEK293 , Humanos , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutação/genética , Técnicas de Patch-Clamp , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptores de GABA/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Análise de Sequência de Proteína , Transfecção , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA