Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811809

RESUMO

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Assuntos
COVID-19/complicações , Cardiotônicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Cardiopatias/tratamento farmacológico , Quinazolinonas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocinas/metabolismo , Feminino , Cardiopatias/etiologia , Células-Tronco Embrionárias Humanas , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Tratamento Farmacológico da COVID-19
2.
Med Res Rev ; 41(1): 223-245, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926459

RESUMO

Clinical development of bromodomain and extra-terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic "readers," which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan-BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.


Assuntos
Neoplasias , Proteínas Nucleares , Proteínas de Ciclo Celular , Humanos , Neoplasias/tratamento farmacológico , Domínios Proteicos , Fatores de Transcrição
3.
Cardiovasc Diabetol ; 20(1): 125, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158057

RESUMO

BACKGROUND: In stable patients with type 2 diabetes (T2D), insulin treatment is associated with elevated risk for major adverse cardiovascular events (MACE). Patients with acute coronary syndrome (ACS) and T2D are at particularly high risk for recurrent MACE despite evidence-based therapies. It is uncertain to what extent this risk is further magnified in patients with recent ACS who are treated with insulin. We examined the relationship of insulin use to risk of MACE and modification of that risk by apabetalone, a bromodomain and extra-terminal (BET) protein inhibitor. METHODS: The analysis utilized data from the BETonMACE phase 3 trial that compared apabetalone to placebo in patients with T2D, low HDL cholesterol, andACS. The primary MACE outcome (cardiovascular death, myocardial infarction, or stroke) was examined according to insulin treatment and assigned study treatment. Multivariable Cox regression was used to determine whether insulin use was independently associated with the risk of MACE. RESULTS: Among 2418 patients followed for median 26.5 months, 829 (34.2%) were treated with insulin. Despite high utilization of evidence-based treatments including coronary revascularization, intensive statin treatment, and dual antiplatelet therapy, the 3-year incidence of MACE in the placebo group was elevated among insulin-treated patients (20.4%) compared to those not-treated with insulin (12.8%, P = 0.0001). Insulin treatment remained strongly associated with the risk of MACE (HR 2.10, 95% CI 1.42-3.10, P = 0.0002) after adjustment for demographic, clinical, and treatment variables. Apabetalone had a consistent, favorable effect on MACE in insulin-treated and not insulin-treated patients. CONCLUSION: Insulin-treated patients with T2D, low HDL cholesterol, and ACS are at high risk for recurrent MACE despite the use of evidence-based, contemporary therapies. A strong association of insulin treatment with risk of MACE persists after adjustment for other characteristics associated with MACE. There is unmet need for additional treatments to mitigate this risk. Trial registration ClinicalTrials.gov NCT02586155, registered October 26, 2015.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Quinazolinonas/uso terapêutico , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/mortalidade , Idoso , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/mortalidade , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Insulina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Quinazolinonas/efeitos adversos , Recidiva , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
4.
Mol Pharmacol ; 92(6): 694-706, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28974538

RESUMO

Bromodomain (BD) and extra-terminal domain containing proteins (BET) are chromatin adapters that bind acetylated histone marks via two tandem BDs, BD1 and BD2, to regulate gene transcription. BET proteins are involved in transcriptional reprogramming in response to inflammatory stimuli. BET BD inhibitors (BETis) that are nonselective for BD1 or BD2 have recognized anti-inflammatory properties in vitro and counter pathology in models of inflammation or autoimmune disease. Although both BD1 and BD2 bind acetylated histone residues, they may independently regulate the expression of BET-sensitive genes. Here we characterized the ability of RVX-297, a novel orally active BETi with selectivity for BD2, to modulate inflammatory processes in vitro, in vivo, and ex vivo. RVX-297 suppressed inflammatory gene expression in multiple immune cell types in culture. Mechanistically, RVX-297 displaced BET proteins from the promoters of sensitive genes and disrupted recruitment of active RNA polymerase II, a property shared with pan-BETis that nonselectively bind BET BDs. In the lipopolysaccharide model of inflammation, RVX-297 reduced proinflammatory mediators assessed in splenic gene expression and serum proteins. RVX-297 also countered pathology in three rodent models of polyarthritis: rat and mouse collagen-induced arthritis, and mouse collagen antibody-induced arthritis. Further, RVX-297 prevented murine experimental autoimmune encephalomyelitis (a model of human multiple sclerosis) disease development when administered prophylactically and reduced hallmarks of pathology when administered therapeutically. We show for the first time that a BD2-selective BETi maintains anti-inflammatory properties and is effective in preclinical models of acute inflammation and autoimmunity.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Proteínas/antagonistas & inibidores , Quinazolinonas/uso terapêutico , Doença Aguda , Animais , Anti-Inflamatórios/uso terapêutico , Anticorpos/imunologia , Artrite/induzido quimicamente , Artrite/imunologia , Artrite/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Células Cultivadas , Colágeno/imunologia , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Ratos Endogâmicos Lew , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Células U937
5.
J Cell Biochem ; 115(2): 253-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038215

RESUMO

Tumor necrosis factor alpha (TNF α) signals in part through the mitogen activated protein (MAP) kinase c-jun-N-terminal kinase (JNK). Activation of JNK has been shown to promote insulin resistance and dyslipidemia, including reductions in plasma high-density lipoprotein (HDL) and apolipoprotein A-I (apo A-I). To examine how TNF α-mediated JNK activation inhibits hepatic apo A-I production, the effects of c-jun activation on apo A-I gene expression were examined in HepG2 cells. Apo A-I gene expression and promoter activity were measured by Northern and Western blotting and transient transfection. Transient transfection and siRNA were used to specifically over-express or knockout c-jun, c-jun-N-terminal kinase-1 and -2 (JNK1 and JNK2, respectively) and mitogen-activated protein kinase-4 (MKK4). TNF α-treatment of HepG2 cells induced rapid phosphorylation of c-jun on serine 63. In cells treated with phorbol-12-myristate-13-acetate (PMA), apo A-I gene promoter activity was inhibited and apo A-I mRNA content and apo A-I protein secretion decreased. Likewise, over-expression of JNK1 and JNK2 inhibited apo A-I promoter activity. Over-expression of constitutively active MKK4, an upstream protein kinase that directly activates JNK, also inhibited apo A-I promoter activity, while over-expression of a dominant-negative MKK4 de-repressed apo A-I promoter activity in TNF α-treated cells. Inhibition of c-jun synthesis using siRNA but not a control siRNA prevented TNF α-mediated inhibition of apo A-I. These results suggest that the MKK4/JNK/c-jun signaling pathway mediates TNF α-dependent inhibition of apo A-I synthesis.


Assuntos
Apolipoproteína A-I/biossíntese , Proteína Quinase 8 Ativada por Mitógeno/biossíntese , Proteína Quinase 9 Ativada por Mitógeno/genética , Fator de Necrose Tumoral alfa/biossíntese , Apolipoproteína A-I/antagonistas & inibidores , Dislipidemias/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Proteína Quinase 9 Ativada por Mitógeno/biossíntese , RNA Interferente Pequeno , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética
6.
Pharm Biol ; 52(9): 1119-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24635344

RESUMO

CONTEXT: Black seed [Nigella sativa L. (Ranunculaceae)] has been shown in animal models to lower serum cholesterol levels. OBJECTIVES: In order to determine if extracts from black seed have any effects on high-density lipoprotein (HDL), we characterized the effects of black seed extract on apolipoprotein A-I (apo A-I) gene expression, the primary protein component of HDL. MATERIALS AND METHODS: Hepatocytes (HepG2) and intestinal cells (Caco-2) were treated with black seed extracts, and Apo A-I, peroxisome proliferator-activated receptor α (PPARα), and retinoid-x-receptor α (RXRα) were measured by Western blot analysis. Apo A-I mRNA levels were measured by quantitative real-time polymerase chain reaction and apo A-I gene transcription was measured by transient transfection of apo A-I reporter plasmids. RESULTS: Extracts from black seeds significantly increased hepatic and intestinal apo A-I secretion, as well as apo A-I mRNA and gene promoter activity. This effect required a PPARα binding site in the apo A-I gene promoter. Treatment of the extract with either heat or trypsin had no effect on its ability to induce apo A-I secretion. Treatment with black seed extract induced PPARα expression 9-fold and RXRα expression 2.5-fold. Furthermore, the addition of PPARα siRNA but not a control siRNA prevented some but not all the positive effects of black seed on apo A-I secretion. DISCUSSION: Black seed extract is a potent inducer of apo A-I gene expression, presumably by enhancing PPARα/RXRα expression. CONCLUSIONS: We conclude that black seed may have beneficial effects in treating dyslipidemia and coronary heart disease.


Assuntos
Apolipoproteína A-I/genética , Lipoproteínas HDL/efeitos dos fármacos , Nigella sativa/química , Extratos Vegetais/farmacologia , Células CACO-2 , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , PPAR alfa/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor X Retinoide alfa/genética , Sementes
7.
Atherosclerosis ; 364: 10-19, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455344

RESUMO

BACKGROUND AND AIMS: Obese patients are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). A lipid-rich diet promotes arterial changes by inducing hypertension, oxidative stress, and inflammation. Bromodomain and extraterminal (BET) proteins contribute to endothelial and immune cell activation in vitro and in atherosclerosis mouse models. We aim to determine if BET inhibition can reduce lipid-rich diet-induced vascular inflammation in mice. METHODS: Body weight, serum glucose and lipid levels were measured in mice fed a high-fat diet (HFD) or low-fat diet (LFD) for 6 weeks and at study termination. BET inhibitors apabetalone and JQ1 were co-administered with the HFD for additional 16 weeks. Aortic gene expression was analyzed post necropsy by PCR, Nanostring nCounter® Inflammation Panel and bioinformatics pathway analysis. Transcription changes and BRD4 chromatin occupancy were analyzed in primary human endothelial cells in response to TNFα and apabetalone. RESULTS: HFD induced weight gain, visceral obesity, high fasting blood glucose, glucose intolerance and insulin resistance compared to LFD controls. HFD upregulated the aortic expression of 47 genes involved in inflammation, innate immunity, cytoskeleton and complement pathways. Apabetalone and JQ1 treatment reduced HFD-induced aortic expression of proinflammatory genes. Congruently, bioinformatics predicted enhanced signaling by TNFα in the HFD versus LFD aorta, which was countered by BETi treatment. TNFα-stimulated human endothelial cells had increased expression of HFD-sensitive genes and higher BRD4 chromatin occupancy, which was countered by apabetalone treatment. CONCLUSIONS: HFD induces vascular inflammation in mice through TNFα signaling. Apabetalone treatment reduces this proinflammatory phenotype, providing mechanistic insight into how BET inhibitors may reduce CVD risk in obese patients.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inflamação , Obesidade , Animais , Humanos , Camundongos , Aorta/metabolismo , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/genética , Lipídeos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Camundongos Obesos
8.
Int Immunopharmacol ; 117: 109929, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857935

RESUMO

The SARS-CoV-2 virus initiates infection via interactions between the viral spike protein and the ACE2 receptors on host cells. Variants of concern have mutations in the spike protein that enhance ACE2 binding affinity, leading to increased virulence and transmission. Viral RNAs released after entry into host cells trigger interferon-I (IFN-I) mediated inflammatory responses for viral clearance and resolution of infection. However, overreactive host IFN-I responses and pro-inflammatory signals drive COVID-19 pathophysiology and disease severity during acute infection. These immune abnormalities also lead to the development of post-COVID syndrome if persistent. Novel therapeutics are urgently required to reduce short- and long-term pathologic consequences associated with SARS-CoV-2 infection. Apabetalone, an inhibitor of epigenetic regulators of the BET protein family, is a candidate for COVID-19 treatment via a dual mechanism of action. In vitro, apabetalone downregulates ACE2 gene expression to limit SARS-CoV-2 entry and propagation. In pre-clinical models and patients treated for cardiovascular disease, apabetalone inhibits expression of inflammatory mediators involved in the pathologic cytokine storm (CS) stimulated by various cytokines. Here we show apabetalone treatment of human lung epithelial cells reduces binding of viral spike protein regardless of mutations found in the highly contagious Delta variant and heavily mutated Omicron. Additionally, we demonstrate that apabetalone counters expression of pro-inflammatory factors with roles in CS and IFN-I signaling in lung cells stimulated with SARS-CoV-2 RNA. Our results support clinical evaluation of apabetalone to treat COVID-19 and post-COVID syndrome regardless of the SARS-CoV-2 variant.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Enzima de Conversão de Angiotensina 2/genética , Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Inflamação/tratamento farmacológico , Interferons , Anticorpos , Síndrome da Liberação de Citocina/tratamento farmacológico , Epigênese Genética
9.
Transl Neurosci ; 14(1): 20220332, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38222824

RESUMO

Brain vascular inflammation is characterized by endothelial activation and immune cell recruitment to the blood vessel wall, potentially causing a breach in the blood - brain barrier, brain parenchyma inflammation, and a decline of cognitive function. The clinical-stage small molecule, apabetalone, reduces circulating vascular endothelial inflammation markers and improves cognitive scores in elderly patients by targeting epigenetic regulators of gene transcription, bromodomain and extraterminal proteins. However, the effect of apabetalone on cytokine-activated brain vascular endothelial cells (BMVECs) is unknown. Here, we show that apabetalone treatment of BMVECs reduces hallmarks of in vitro endothelial activation, including monocyte chemoattractant protein-1 (MCP-1) and RANTES chemokine secretion, cell surface expression of endothelial cell adhesion molecule VCAM-1, as well as endothelial capture of THP-1 monocytes in static and shear stress conditions. Apabetalone pretreatment of THP-1 downregulates cell surface expression of chemokine receptors CCR1, CCR2, and CCR5, and of the VCAM-1 cognate receptor, integrin α4. Consequently, apabetalone reduces THP-1 chemoattraction towards soluble CCR ligands MCP-1 and RANTES, and THP-1 adhesion to activated BMVECs. In a mouse model of brain inflammation, apabetalone counters lipopolysaccharide-induced transcription of endothelial and myeloid cell markers, consistent with decreased neuroendothelial inflammation. In conclusion, apabetalone decreases proinflammatory activation of brain endothelial cells and monocytes in vitro and in the mouse brain during systemic inflammation.

10.
J Food Biochem ; 46(2): e14064, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984676

RESUMO

Several nutrients modulate the transcriptional activity of the apolipoprotein A-I (apo A-I) gene. To determine the influence of rare sugars on apo A-I expression in hepatic (HepG2) and intestinal derived (Caco-2) cell lines, apo A-I, albumin, and SP1 were quantified with enzyme immunoassay and Western blots while mRNA levels were quantified with real-time polymerase chain reaction. The promoter activity was measured using transient transfection assays with plasmids containing various segments and mutations in the promoter. D-allulose and D-tagatose, increased apo A-I concentration in culture media while D-sorbose and D-allose did not have any measurable effects. D-allulose did not increase apo A-I levels in Caco-2 cells. These changes paralleled the increased mRNA levels and promoter activity. D-allulose-response was mapped at the insulin response core element (IRCE). Mutation of the IRCE decreased the ability of D-allulose and insulin to activate the promoter. Treatment of HepG2 cells, but not Caco-2 cells, with D-alluose and insulin increased SP1 expression relative to control cells. D-allulose augmented the expression and IRCE binding of SP1, an essential transcription factor for the insulin on apo A-I promoter activity. D-allulose can modulate some insulin-responsive genes and may have anti-atherogenic properties, in part due to increasing apo A-I production. PRACTICAL APPLICATIONS: Coronary artery disease (CAD) is the number one cause of mortality in industrialized countries. A risk factor associated with CAD is low high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apo A-I) concentrations in plasma. Thus, novel therapeutic agents or nutrients that upregulate apo A-I production should be identified. D-allulose and D-tagatose are used as sweeteners and may have favorable effects on insulin resistance and diabetes. This study shows that D-allulose and D-tagatose increases apo A-I production through increased transcription factor SP1-binding to insulin response element of the promoter. These sweeteners modulate some insulin responsive genes, increase the production of apo-A-I, and therefore may have anti-atherogenic properties.


Assuntos
Apolipoproteína A-I , Frutose/farmacologia , Insulina , Apolipoproteína A-I/genética , Células CACO-2 , Células Hep G2 , Hexoses , Humanos
11.
Biomed Pharmacother ; 152: 113230, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35687908

RESUMO

BACKGROUND: Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability. METHODS: Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays. FINDINGS: We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription. INTERPRETATION: BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.


Assuntos
COVID-19 , Fatores de Transcrição , Proteínas de Ciclo Celular/metabolismo , Cromatina , Células Endoteliais/metabolismo , Epigênese Genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
12.
Pharmacol Res Perspect ; 10(3): e00949, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35417091

RESUMO

Fabry disease (FD) is a rare X-linked disorder of lipid metabolism, characterized by the accumulation of globotriaosylceramide (Gb3) due to defective the lysosomal enzyme, α-galactosidase. Gb3 deposits activate immune-mediated systemic inflammation, ultimately leading to life-threatening consequences in multiple organs such as the heart and kidneys. Enzyme replacement therapy (ERT), the standard of care, is less effective with advanced tissue injury and inflammation in patients with FD. Here, we showed that MCP-1 and TNF-α cytokine levels were almost doubled in plasma from ERT-treated FD patients. Chemokine receptor CCR2 surface expression was increased by twofold on monocytes from patients with low eGFR. We also observed an increase in IL12B transcripts in unstimulated peripheral blood mononuclear cells (PBMCs) over a 2-year period of continuous ERT. Apabetalone is a clinical-stage oral bromodomain and extra terminal protein inhibitor (BETi), which has beneficial effects on cardiovascular and kidney disease related pathways including inflammation. Here, we demonstrate that apabetalone, a BD2-selective BETi, dose dependently reduced the production of MCP-1 and IL-12 in stimulated PBMCs through transcriptional regulation of their encoding genes. Reactive oxygen species production was diminished by up to 80% in stimulated neutrophils following apabetalone treatment, corresponding with inhibition of NOX2 transcription. This study elucidates that inhibition of BET proteins by BD2-selective apabetalone alleviates inflammatory processes and oxidative stress in innate immune cells in general and in FD. These results suggest potential benefit of BD2-selective apabetalone in controlling inflammation and oxidative stress in FD, which will be further investigated in clinical trials.


Assuntos
Doença de Fabry , Citocinas/metabolismo , Terapia de Reposição de Enzimas , Epigênese Genética , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Doença de Fabry/metabolismo , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Inflamação/genética , Leucócitos Mononucleares/metabolismo , Quinazolinonas
13.
Am J Prev Cardiol ; 11: 100372, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36039183

RESUMO

Background: Nonalcoholic fatty liver disease (NAFLD) is common among patients with type 2 diabetes mellitus (T2DM) and is associated with increased risk for coronary atherosclerosis and acute cardiovascular (CV) events. We employed the validated, non-invasive Angulo NAFLD fibrosis score (FS) in an intervention study in patients with T2DM and recent acute coronary syndrome (ACS) to determine the association of FS with CV risk and treatment response to apabetalone. Apabetalone is a novel selective inhibitor of the second bromodomain of bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. Methods: The Phase 3 BETonMACE trial compared apabetalone with placebo in 2,425 patients with T2DM and recent ACS. In this post hoc analysis, we evaluated the impact of apabetalone therapy on CV risk, defined as a composite of major adverse cardiovascular events (MACE: CV death, non-fatal myocardial infarction [MI], or stroke) and hospitalization for heart failure (HHF) in two patient categories of FS that reflect the likelihood of underlying NAFLD. Patients were initially classified into three mutually exclusive categories according to a baseline Angulo FS <-1.455 (F0-F2), -1.455 to 0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 connote fibrosis severity none, mild, moderate, severe, and cirrhosis, respectively. The composite of ischemic MACE and HHF in the placebo group was higher in indeterminant and F3-F4 categories compared to the F0-F2 category (17.2% vs 15.0% vs 9.7%). Therefore, for the present analysis, the former two categories were combined into an elevated NAFLD CVD risk group (FS+) that was compared with the F0-F2 group (lower NAFLD risk, FS0-2). Results: In 73.7% of patients, FS was elevated and consistent with a moderate-to-high likelihood of advanced liver fibrosis (FS+); 26.3% of patients had a lower FS (FS0-2). In the placebo group, FS+ patients had a higher incidence of ischemic MACE and HHF (15.4%) than FS0-2 patients (9.7%). In FS+ patients, addition of apabetalone to standard of care treatment lowered the rate of ischemic MACE compared with placebo (HR = 0.79; 95% CI 0.60-1.05; p=0.10), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01), and the composite of ischemic MACE and HHF (HR = 0.76; 95% CI 0.59-0.98; p=0.03). In contrast, there was no apparent benefit of apabetalone in FS0-2 patients (HR 1.24; 95% CI 0.75-2.07; p=0.40; HR 1.12; 95% CI 0.30-4.14; p=0.87; and HR 1.13; 95% CI 0.69-1.86; p=0.62, respectively). Over a median duration of 26.5 months, FS increased from baseline in both treatment groups, but the increase was smaller in patients assigned to apabetalone than to placebo (p=0.04). Conclusions: Amongst patients with T2DM, recent ACS, and a moderate-to-high likelihood of advanced liver fibrosis, apabetalone was associated with a significantly lower rate of ischemic MACE and HHF and attenuated the increase in hepatic FS over time.

14.
Biomedicines ; 9(4)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919584

RESUMO

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.

15.
J Alzheimers Dis ; 83(4): 1703-1715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34459400

RESUMO

BACKGROUND: Epigenetic changes may contribute importantly to cognitive decline in late life including Alzheimer's disease (AD) and vascular dementia (VaD). Bromodomain and extra-terminal (BET) proteins are epigenetic "readers" that may distort normal gene expression and contribute to chronic disorders. OBJECTIVE: To assess the effects of apabetalone, a small molecule BET protein inhibitor, on cognitive performance of patients 70 years or older participating in a randomized trial of patients at high risk for major cardiovascular events (MACE). METHODS: The Montreal Cognitive Assessment (MoCA) was performed on all patients 70 years or older at the time of randomization. 464 participants were randomized to apabetalone or placebo in the cognition sub-study. In a prespecified analysis, participants were assigned to one of three groups: MoCA score≥26 (normal performance), MoCA score 25-22 (mild cognitive impairment), and MoCA score≤21 (dementia). Exposure to apabetalone was equivalent in the treatment groups in each MoCA-defined group. RESULTS: Apabetalone was associated with an increased total MoCA score in participants with baseline MoCA score of≤21 (p = 0.02). There was no significant difference in change from baseline in the treatment groups with higher MoCA scores. In the cognition study, more patients randomized to apabetalone discontinued study drug for adverse effects (11.3% versus 7.9%). CONCLUSION: In this randomized controlled study, apabetalone was associated with improved cognition as measured by MoCA scores in those with baseline scores of 21 or less. BET protein inhibitors warrant further investigation for late life cognitive disorders.


Assuntos
Epigênese Genética , Testes de Estado Mental e Demência/estatística & dados numéricos , Quinazolinonas/administração & dosagem , Idoso , Doenças Cardiovasculares/complicações , Disfunção Cognitiva/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Endocr Rev ; 27(1): 2-16, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16243964

RESUMO

One of the factors contributing to the increased risk of developing premature atherosclerosis is low plasma concentrations of high-density lipoprotein (HDL) cholesterol (HDLc). Multiple potential mechanisms account for the cardioprotective effects of HDL and its main protein apolipoprotein A-I (apo A-I). The low plasma concentrations of HDL could be the result of increased fractional clearance and reduced expression of apo A-I. To this end, nutrients play an important role in modulating the fractional clearance rate, as well as the rate of apo A-I gene expression. Because medical nutrition therapy constitutes the cornerstone of management of dyslipidemias, it is essential to understand the mechanisms underlying the changes in HDL level in response to alterations in dietary intake. In this review, we will discuss the effect of select nutrients on serum HDLc and apo A-I levels. Specifically, we will review the literature on the effect of carbohydrates, fatty acids, and ketones, as well as some of the nutrient-related metabolites, such as glucosamine and the prostanoids, on apo A-I gene expression. Because there are multiple mechanisms involved in the regulation of serum HDLc levels, changes in gene transcription do not necessarily correlate with clinical observations on serum levels of HDLc.


Assuntos
Apolipoproteína A-I/sangue , HDL-Colesterol/sangue , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Cetonas/farmacologia , Animais , Apolipoproteína A-I/genética , Linhagem Celular , HDL-Colesterol/genética , Dieta , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosamina/farmacologia , Humanos , Política Nutricional , Prostaglandinas/farmacologia , Transcrição Gênica/efeitos dos fármacos
17.
Cardiovasc Ther ; 2020: 9397109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821285

RESUMO

Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Quinazolinonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Endotoxemia/genética , Endotoxemia/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
18.
Clin Epigenetics ; 12(1): 166, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33172487

RESUMO

BACKGROUND: Patients with cardiovascular disease (CVD) and type 2 diabetes (DM2) have a high residual risk for experiencing a major adverse cardiac event. Dysregulation of epigenetic mechanisms of gene transcription in innate immune cells contributes to CVD development but is currently not targeted by therapies. Apabetalone (RVX-208) is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins-histone acetylation readers that drive pro-inflammatory and pro-atherosclerotic gene transcription. Here, we assess the impact of apabetalone on ex vivo inflammatory responses of monocytes from DM2 + CVD patients. RESULTS: Monocytes isolated from DM2 + CVD patients and matched controls were treated ex vivo with apabetalone, interferon γ (IFNγ), IFNγ + apabetalone or vehicle and phenotyped for gene expression and protein secretion. Unstimulated DM2 + CVD monocytes had higher baseline IL-1α, IL-1ß and IL-8 cytokine gene expression and Toll-like receptor (TLR) 2 surface abundance than control monocytes, indicating pro-inflammatory activation. Further, DM2 + CVD monocytes were hyper-responsive to stimulation with IFNγ, upregulating genes within cytokine and NF-κB pathways > 30% more than control monocytes (p < 0.05). Ex vivo apabetalone treatment countered cytokine secretion by DM2 + CVD monocytes at baseline (GROα and IL-8) and during IFNγ stimulation (IL-1ß and TNFα). Apabetalone abolished pro-inflammatory hyper-activation by reducing TLR and cytokine gene signatures more robustly in DM2 + CVD versus control monocytes. CONCLUSIONS: Monocytes isolated from DM2 + CVD patients receiving standard of care therapies are in a hyper-inflammatory state and hyperactive upon IFNγ stimulation. Apabetalone treatment diminishes this pro-inflammatory phenotype, providing mechanistic insight into how BET protein inhibition may reduce CVD risk in DM2 patients.


Assuntos
Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Monócitos/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Quinazolinonas/farmacologia , Idoso , Aterosclerose/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/patologia , Estudos de Casos e Controles , Citocinas/efeitos dos fármacos , Metilação de DNA , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética , Feminino , Humanos , Inflamação/metabolismo , Interleucina-18/genética , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fenótipo , Quinazolinonas/uso terapêutico , Receptor 2 Toll-Like/efeitos dos fármacos , Fatores de Transcrição
19.
Biochim Biophys Acta ; 1780(2): 264-73, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18082637

RESUMO

We have found that 1,25-dihydroxy-cholecalciferol (1,25-(OH)(2)D(3)) represses the expression of the apolipoprotein A-I (apo A-I) gene in hepatocytes. In this manuscript we examined the effects of the vitamin D receptor (VDR) modulators EB1089 (EB) and ZK191784 (ZK) on expression of the apo A-I gene in liver (HepG2) and in intestinal (Caco-2) cells. In HepG2 cells, EB and ZK induced apo A-I secretion and gene promoter activity in a dose-dependent manner. This induction did not require the VDR since antisense-mediated inhibition of VDR had no appreciable effect on apo A-I promoter activity in cells treated with EB or ZK. Although repression of apo A-I gene expression by 1,25-(OH)(2)D(3) in hepatocytes required nuclear receptor binding to site A in the promoter, this cis-element was insufficient for induction of apo-AI by EB and ZK. In Caco-2 cells, treatment with 1,25-(OH)(2)D(3) had no effect on apo A-I protein secretion or promoter activity while EB induced and ZK inhibited apo A-I gene expression. Gel shift assays showed that none of the treatments resulted in a change in site A binding activity. These results indicate that VDR modulators in hepatocytes and intestinal cells differentially regulate expression of the apo A-I gene.


Assuntos
Apolipoproteína A-I/genética , Calcitriol/análogos & derivados , Regulação da Expressão Gênica , Expressão Gênica/efeitos dos fármacos , Receptores de Calcitriol/efeitos dos fármacos , Animais , Apolipoproteína A-I/metabolismo , Células CACO-2 , Calcitriol/química , Calcitriol/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Elemento de Resposta à Vitamina D/genética
20.
J Virol ; 82(6): 2727-40, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18199646

RESUMO

Adeno-associated virus (AAV) vectors are associated with relatively mild host immune responses in vivo. Although AAV induces very weak innate immune responses, neutralizing antibodies against the vector capsid and transgene still occur. To understand further the basis of the antiviral immune response to AAV vectors, studies were performed to characterize AAV interactions with macrophages. Primary mouse macrophages and human THP-1 cells transduced in vitro using an AAV serotype 2 (AAV2) vector encoding green fluorescent protein did not result in measurable transgene expression. An assessment of internalized vector genomes showed that AAV2 vector uptake was enhanced in the presence of normal but not heat-inactivated or C3-depleted mouse/human serum. Enhanced uptake in the presence of serum coincided with increased macrophage activation as determined by the expression of NF-kappaB-dependent genes such as macrophage inflammatory protein 2 (MIP-2), interleukin-1beta (IL-1beta), IL-8, and MIP-1beta. AAV vector serotypes 1 and 8 also activated human and mouse macrophages in a serum-dependent manner. Immunoprecipitation studies demonstrated the binding of iC3b complement protein to the AAV2 capsid in human serum. AAV2 did not activate the alternative pathway of the complement cascade and lacked cofactor activity for factor I-mediated degradation of C3b to iC3b. Instead, our results suggest that the AAV capsid also binds complement regulatory protein factor H. In vivo, complement receptor 1/2- and C3-deficient mice displayed impaired humoral immunity against AAV2 vectors, with a delay in antibody development and significantly lower neutralizing antibody titers. These results show that the complement system is an essential component of the host immune response to AAV.


Assuntos
Proteínas do Sistema Complemento/fisiologia , Dependovirus/imunologia , Vetores Genéticos/imunologia , Animais , Anticorpos Antivirais/biossíntese , Linhagem Celular , Dependovirus/genética , Expressão Gênica , Humanos , Imunoprecipitação , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA