Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 19(9): 1137-1146, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050489

RESUMO

Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining.


Assuntos
Anticorpos , Encéfalo , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Humanos , Camundongos
2.
Chem Res Toxicol ; 29(9): 1560-4, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27509204

RESUMO

Semicarbazide is a widespread food contaminant that is produced by multiple pathways. However, the toxicity of semicarbazide to human health remains unclear. Using a highly accurate and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry method, we identified and quantitated in this study for the first time the DNA and RNA adduct of semicarbazide in DNA/RNA isolated from the internal organs of semicarbazide-exposed rats. The analysis revealed a dose-dependent formation of the adducts in the internal organs of the semicarbazide-dosed rats and with the highest adduct levels identified in the stomach and small intestine. Furthermore, results showed significantly higher levels of the RNA adduct (4.1-7.0 times) than that of the DNA adducts. By analyzing DNA/RNA samples isolated from rat organs in semicarbazide-dosed rats at different time points postdosing, the adduct stability in vivo was also investigated. These findings suggest that semicarbazide could have exerted its toxicity by affecting both the transcription and translation processes of the cell.


Assuntos
Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , RNA/metabolismo , Semicarbazidas/análise , Espectrometria de Massas em Tandem , Administração Oral , Animais , Humanos , Rim/química , Masculino , Ratos , Ratos Sprague-Dawley
3.
Anal Bioanal Chem ; 408(3): 953-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26581621

RESUMO

The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.


Assuntos
Carcinógenos/química , Cromatografia Líquida de Alta Pressão/métodos , Adutos de DNA/química , Ácidos/química , Hidrólise
4.
ISME J ; 17(12): 2303-2312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875603

RESUMO

Marine biofilms are complex communities of microorganisms that play a crucial ecological role in oceans. Although prokaryotes are the dominant members of these biofilms, little is known about their interactions with viruses. By analysing publicly available and newly sequenced metagenomic data, we identified 2446 virus-prokaryote connections in 84 marine biofilms. Most of these connections were between the bacteriophages in the Uroviricota phylum and the bacteria of Proteobacteria, Cyanobacteria and Bacteroidota. The network of virus-host pairs is complex; a single virus can infect multiple prokaryotic populations or a single prokaryote is susceptible to several viral populations. Analysis of genomes of paired prokaryotes and viruses revealed the presence of 425 putative auxiliary metabolic genes (AMGs), 239 viral genes related to restriction-modification (RM) systems and 38,538 prokaryotic anti-viral defence-related genes involved in 15 defence systems. Transcriptomic evidence from newly established biofilms revealed the expression of viral genes, including AMGs and RM, and prokaryotic defence systems, indicating the active interplay between viruses and prokaryotes. A comparison between biofilms and seawater showed that biofilm prokaryotes have more abundant defence genes than seawater prokaryotes, and the defence gene composition differs between biofilms and the surrounding seawater. Overall, our study unveiled active viruses in natural biofilms and their complex interplay with prokaryotes, which may result in the blooming of defence strategists in biofilms. The detachment of bloomed defence strategists may reduce the infectivity of viruses in seawater and result in the emergence of a novel role of marine biofilms.


Assuntos
Cianobactérias , Vírus , Transcriptoma , Vírus/genética , Água do Mar/microbiologia , Genômica , Cianobactérias/genética , Biofilmes
5.
J Hazard Mater ; 445: 130599, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055998

RESUMO

Silver nanoparticles (AgNPs), which have been used extensively in consuming products and eventually released into the natural environment, have aroused concerns recently because of their potentially harmful effects on human beings following various routes of exposure. As the liver is one of the largest accumulation and deposition sites of circulatory AgNPs, it is important to evaluate the hepatotoxicity induced by AgNPs. However, the acting mechanisms of AgNPs-induced hepatotoxicity are still elusive to a great extent. Herein, we investigated the hepatotoxic effects of AgNPs using a comparative proteomics approach. First, we evaluated the cytotoxicity of different-sized AgNPs and found that the cancerous liver cells were generally more sensitive than the normal liver cells. Next, proteomics results suggested that HepG2 and L02 cells showed distinct adaptive responses upon AgNPs exposure. HepG2 cells respond to stresses by adapting energy metabolism, upregulating metallothionein expression and increasing the expression of antioxidants, while L02 cells protect themselves by increasing DNA repair and macro-autophagy. Besides, mitochondrial ROS has been identified as one of the causes of AgNPs-induced hepatotoxicity. Collectively, our results revealed that hepatic cancer cells and normal cells cope with AgNPs in notably different pathways, providing new insights into mechanisms underlying AgNPs-induced hepatotoxicity. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Deutsch et al. (2020)) via the PRIDE (Perez-Riverol et al. (2019)) partner repository with the dataset identifier PXD029511.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Humanos , Prata/química , Espécies Reativas de Oxigênio/metabolismo , Proteômica/métodos , Nanopartículas Metálicas/toxicidade , Hepatócitos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
6.
Mol Omics ; 18(10): 948-956, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36218091

RESUMO

Staphylococcus aureus (S. aureus) causes infections and can be fatal. In the long-term struggle against antibiotics, S. aureus has acquired resistance toward antibiotics and become more difficult to kill. Metabolomics could directly reflect the responses of S. aureus toward antibiotics, which is effective for studying the resistance mechanism of S. aureus. In this study, based on a nontargeted metabolic figure printing technique, the metabolome of a pair of isogenic methicillin-susceptible and resistant S. aureus strains ATCC25923 (MSSA) and ATCC43300 (MRSA) treated with or without oxacillin was characterized. 7 and 29 significantly changed metabolites in MRSA and MSSA were identified by combined accurate mass and mass fragmentation analysis. Pathway enrichment analysis suggested that DNA repair and flavin biosynthesis are the universal pathways of both MSSA and MRSA under antibiotic stress. MRSA systematically and effectively fights against oxacillin through precise control of energy production, PBP2a substrate biosynthesis and antioxidant function. In contrast, MSSA lacks effective defense pathways against oxacillin. The different metabolome responses of MSSA and MRSA toward antibiotics provide us with new insights into how S. aureus develops antibiotic resistance.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Meticilina/metabolismo , Resistência a Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/metabolismo , Oxacilina/farmacologia , Oxacilina/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Metabolômica
7.
ACS Nano ; 16(9): 14973-14981, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36099405

RESUMO

Microalgae-based biofuels are receiving attention at the environmental, economic, and social levels because they are clean, renewable, and quickly produced. The green algae Chlorella vulgaris has been extensively studied in research laboratories and the biofuel industry as a model organism to increase lipid production to be cost-effective in commercial production. In this work, we utilized a lipid-droplet-specific luminogen with aggregation-induced emission (AIE) characteristics to increase the lipid production of C. vulgaris by fluorescent imaging and sorting of those algal cells with large and rich lipid droplets for subculturing. The AIE-active TPA-A enabled real-time monitoring of the size and number of lipid droplets in C. vulgaris during their growth period so that we can identify the best time for harvesting. Furthermore, the algae cells with high lipid content were identified and collected for subculturing by the technique of fluorescence-activated cell sorting (FACS). The lipid production in the generation of two successive selections was almost doubled compared to the generation with natural selection. This work demonstrated that the technologies of AIE and FACS could be applied together to improve the production of a third-generation biofuel.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Lipídeos
8.
J Ethnopharmacol ; 279: 114382, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34197959

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the principle of traditional Chinese medicine (TCM), clinical usage is based on drug attributes of the herbal medicine. The cold and hot properties of TCM are classified accordingly to their pharmacological effects, such as temperature change. Herbal medicine has been used as food supplements in our daily life, and the thermogenetic regulation is one of their primary applications. However, the underlying mechanism of "cold" or "hot" stimulating effect of herbal medicine has not been fully identified. AIM OF THE STUDY: Thermogenetic regulation and classification of herbal medicine of hot/cold herbs were determined by rat model of yeast-induced fever. MATERIALS AND METHODS: Here, a novel method in classifying and characterizing cold- and hot-herbal medicines was established by analyses of mass spectrometry (MS)-based metabolomics and lipidomics from the serum of herbal extract-treated rats. The yeast-induced inflammatory rats were used as the model system, which were subjected to the treatments of cold- or hot-herbal medicine. RESULTS: The multi-omics approach identified the clustering of metabolites from cold and hot herb-treated rat serum by using partial least squares discriminant analysis (PLS-DA), and which subsequently identified that the 8-h treatment was the metabolic perturbation point of herb-mediated thermogenesis. Meanwhile, the levels of identified metabolites in the serum, i.e. lysoPE, lysoPC and carnitine, showed a positive relationship with the regulation of body temperature; while the levels of amino acid, fatty acid and bile acid were contrary correlated with the temperature change. In addition, the differential expressed metabolites were subjected to pathway enrichment and network analyses in revealing the possible action mechanism of herbal medicines in relating to thermogenetic regulation. CONCLUSION: The developed MS-based omics provides a new insight in characterizing the properties of cold/hot herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Febre/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Extratos Vegetais/uso terapêutico , Animais , Lipidômica , Metabolômica , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Leveduras
9.
Mol Omics ; 17(3): 405-412, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34008672

RESUMO

Aristolochic acids (AAs), nephrotoxic components of herbs, have been previously demonstrated to cause DNA damage by forming DNA-AA adducts. However, the changes of tissue proteome profiles revealing AA toxicity need to be further studied. We conducted a proteomic study on the kidney and liver tissues of AA treated rats by a shotgun proteomics approach coupled with LC-MS/MS technology. A total of 1543 and 1641 proteins were identified and quantified in the kidneys and liver. Due to AA dosage, 10 and 4 proteins significantly changed in kidneys and the liver after multiple testing correction. Pathway enrichment analysis results were variant in kidneys and the liver. The enrichment analysis of metabolic pathways showed that gene expression and protein biosynthesis disorders were the common causes of AA toxicity to organs. Biological processes that positively responded to AAs in the liver probably have a detoxification function. SEC14-like protein 2 and synaptic vesicle membrane protein VAT-1 homolog were the mostly downregulated proteins in the liver and kidneys respectively.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Rim/metabolismo , Lipoproteínas/metabolismo , Fígado/metabolismo , Oxirredutases/metabolismo , Proteômica/métodos , Transativadores/metabolismo , Animais , Cromatografia Líquida , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Ratos , Espectrometria de Massas em Tandem
10.
Front Pharmacol ; 12: 670947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248625

RESUMO

Systems biology unravels the black box of signaling pathway of cells; but which has not been extensively applied to reveal the mechanistic synergy of a herbal formula. The therapeutic efficacies of a herbal formula having multi-target, multi-function and multi-pathway are the niches of traditional Chinese medicine (TCM). Here, we reported an integrated omics approach, coupled with the knockout of an active compound, to measure the regulation of cellular signaling, as to reveal the landscape in cultured rat osteoblasts having synergistic pharmacological efficacy of Danggui Buxue Tang (DBT), a Chinese herbal formula containing Angelicae Sinensis Radix and Astragali Radix. The changes in signaling pathways responsible for energy metabolism, RNA metabolism and protein metabolism showed distinct features between DBT and calycosin-depleted DBT. Here, our results show that calycosin within DBT can orchestrate the osteoblastic functions and signaling pathways of the entire herbal formula. This finding reveals the harmony of herbal medicine in pharmacological functions, as well as the design of drug/herbal medicine formulation. The integration of systems biology can provide novel and essential insights into the synergistic property of a herbal formula, which is a key in modernizing TCM.

11.
J Agric Food Chem ; 63(12): 3161-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25763600

RESUMO

Carcinogenic nitropolycyclic aromatic hydrocarbons (nitro-PAHs) are ubiquitous in the ambient environment. They are emitted predominantly from internal combustion engines and by reacting polycyclic aromatic hydrocarbons with nitrogen oxide. The emerging evidence that nitro-PAHs are taken up by plants and bioaccumulatd in the food chain has aroused worldwide concerns for the potential of chronic poisoning through dietary intake. Therefore, analytical methods of high sensitivity are extremely important for assessing the risk of human exposure to nitro-PAHs. This paper describes the development of a simple and robust ultraperformance liquid chromatography coupled fluorescence detector (UPLC-FLD) method for the sensitive determination of nitro-PAHs in meat products. The method entails precolumn reduction of the otherwise nonfluorescent nitro-PAHs to amino-PAHs which strongly fluoresce for their determination by UPLC-FLD analysis. The developed method was validated for extraction efficiency, accuracy, precision, and detection limit and has been successfully applied in quantifying 1-nitronaphthalene (1-NN), 2-nitrofluorene (2-NF), and 1-nitropyrene (1-NP) in fresh and cured meat products. The results showed that the combination of Fe/H(+)-induced nitro-reduction and UPLC-FLD analysis allows sensitive quantification of 1-NN, 2-NF, and 1-NP at detection limits of 0.59, 0.51, and 0.31 µg/kg, respectively, which is at least 10 times lower than those of the existing analytical methods.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fluorenos/análise , Produtos da Carne/análise , Naftalenos/análise , Pirenos/análise , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/instrumentação , Contaminação de Alimentos/análise , Oxirredução
12.
Vaccine ; 30(45): 6427-35, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22910287

RESUMO

BACKGROUND: We hypothesized that low dose intradermal vaccination of the trivalent influenza vaccine (TIV) delivered by the MicronJet600™ (NanoPass Technologies, Israel) would be non-inferior to the full dose intramuscular and mid dose Intanza(®) vaccination in the elderly and the chronically ill adults. METHODS: We performed a prospective randomized trial on elderly and chronically ill adults. Subjects were randomly assigned into 4 groups. Groups ID3 and ID9 received reduced dose ID TIV (3 µg and 9 µg of hemagglutinin (HA) per strain respectively) delivered by MicronJet600™ (NanoPass Technologies, Israel). Group INT9 received reduced dose ID TIV (9 µg) delivered by Becton Dickinson's Soluvia™ device (Intanza(®)9, Sanofi-Pasteur, France). Control group IM15 received a full dose IM TIV (15 µg). We measured antibody titers by hemagglutination inhibition (HAI) and microneutralization (MN) assays at baseline and day 21. RESULTS: Baseline characteristics for all groups were similar (group and sample sizes: ID3=63; ID9=68; INT9=65; and IM15=66). At day 21 post vaccination, the GMT ratio and the seroconversion rates difference for all three strains of the ID vaccine groups were non-inferior to the IM vaccine group. The seroconversion rate, seroprotection rate, and the GMT of the H1N1 strains by HAI and MN assays were significantly higher in the ID groups compared with the full dose IM vaccine group. The seroconversion rates of the H3N2 strain by HAI assay were also significantly higher in the ID groups when compared with the full dose IM group. Direct comparison among the three ID groups showed no significant differences. No serious adverse events related to vaccination were reported. CONCLUSION: Dose-sparing ID TIV can overcome reduced immunogenicity of the H1N1 strain, and according to some measures, for the H3N2 strain. At risk subjects indicated for the TIV should be considered for intradermal immunization to compensate for reduced immunogenicity.


Assuntos
Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Vacinação/métodos , Idoso , Anticorpos Antivirais/sangue , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Injeções Intradérmicas , Masculino , Testes de Neutralização , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA