Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Small ; : e2400259, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624171

RESUMO

Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.

2.
Chem Soc Rev ; 52(2): 454-472, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594823

RESUMO

The design and development of functional materials with real-life applications are highly demanding. Understanding and controlling inter- and intra-molecular interactions provide opportunities to design new materials. A judicious manipulation of the molecular structure significantly alters such interactions and can boost selected properties and functions of the material. There is burgeoning evidence of the beneficial effects of non-covalent interactions (NCIs), showing that manipulating NCIs may generate functional materials with a wide variety of physical properties leading to applications in catalysis, drug delivery, crystal engineering, etc. This prompted us to review the implications of NCIs on the molecular packing, optical properties, and applications of functional π-conjugated materials. To this end, this tutorial review will cover different types of interactions (electrostatic, π-interactions, metallophilic, etc.) and their impact on π-conjugated materials. Attempts have also been made to delineate the effects of weak interactions on opto-electronic (O-E) applications.

3.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256142

RESUMO

To reduce the mortality and morbidity associated with cancer, new cancer theranostics are in high demand and are an emerging area of research. To achieve this goal, we report the synthesis and characterization of piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives (SA1-SA7). These compounds were synthesized in good yields following a two-step protocol and characterized using multiple analytical techniques. In vitro cytotoxicity and fluorescent cellular imaging of the compounds were assessed against non-cancerous fibroblast (3T3) and breast cancer (4T1) cell lines. Although the former study indicated the safe nature of the compounds (viability = 82-95% at 1 µg/mL), imaging studies revealed that the designed probes had good membrane permeability and could disperse in the whole cell cytoplasm. In silico studies, including molecular docking, molecular dynamics (MD) simulation, and ADME/Tox results, indicated that the compounds had the ability to target CAIX-expressing cancers. These findings suggest that piperazine-linked 1,8-naphthalimide-arylsulfonyl derivatives are potential candidates for cancer theranostics and a valuable backbone for future research.


Assuntos
Naftalimidas , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Piperazina , Imagem Molecular
4.
Angew Chem Int Ed Engl ; 63(22): e202403660, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38465907

RESUMO

Luminescent organic radicals, especially those with photoactivated circularly polarized luminescence (CPL) features, hold great significance for cutting-edge optoelectronic applications, but their development still remains a challenge. In this study, we propose a novel strategy to achieve photoactivated CPL radicals by bonding two phosphine centers within an axial chiral system, yielding a compound of R/S-5,5-bis(diphenylphosphino)-4,4'-bibenzo[d][1,3]dioxole (R/S-BDP). The photoactivated R/S-BDP molecules in polymer matrix display a robust quantum yield of 19.8 % and a dissymmetry factor (glum) of 1.2×10-4, marking this work as the first example of photoactivated CPL radicals. Furthermore, the glum is improved to 1.0×10-2 by using a liquid crystal as host. Experimental and theoretical analyses reveal that R/S-BDP molecules, endowed with double phosphine cores in axial chirality, offer a direct way for intramolecular electron transfer upon photoirradiation. This leads to the generation of radical ionic pairs, which subsequently trigger the donor-acceptor arrangement through intermolecular electron transfer, thereby resulting in stable radical emission. The extended photoactivated BDP-F exhibits a remarkably high quantum efficiency of 57.8%. Ultimately, the distinctive photo-responsive CPL radical luminescence has been successfully used for information displays and anti-counterfeiting.

5.
Chemistry ; 29(37): e202300376, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062705

RESUMO

Two novel nona-coordinated Eu(III) complexes [Eu(btfa)3 (Ph-TerPyr)] (Eu-1) and [Eu(NTA)3 (Ph-TerPyr)] (Eu-2) have been synthesized and characterized. The structure of the complexes was elucidated by density functional theory (DFT) methods. The experimental photophysical properties of the complexes were investigated and complemented with theoretical calculations. Effective energy transfer (ET) pathways for the sensitized red luminescence is discussed. The complexes were tested as emitting layers (EML) in organic light emitting diodes (OLEDs). At the optimum doping concentration of 4 wt.%, the double-EML OLEDs of Eu-1 exhibited red electroluminescence (EL) with an EQE of 4.0 % and maximum brightness (B)=1179 cd/m2 , maximum current efficiency (ηc )=5.64 cd/A, and maximum power efficiency (ηp )=4.78 lm/W at the current density (J) of 10 mA/cm2 . Interestingly, the double-EML OLEDs of Eu-2 at the optimum concentration of 3 wt.%, displayed an outstanding EL performance with EQE of 7.32 % and B=838 cd/m2 , ηc =10.19 cd/A and ηp =10.33 lm/W at J=10 mA/cm2 . The EL performance of this device is among the best reported for devices incorporating a europium complex as a red emitter.

6.
J Org Chem ; 88(17): 12502-12518, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579226

RESUMO

A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of ß-ketophosphine oxides, ß-ketophosphinates, and ß-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired ß-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.

7.
J Org Chem ; 88(23): 16196-16215, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955519

RESUMO

A simple and efficient method for the ruthenium-catalyzed 1,6-hydroalkylation of para-quinone methides (p-QMs) with ketones via the in situ activation of C(sp3)-H bonds has been disclosed. Without the need for preactivation of the substrates and oxidant, a broad range of p-QMs and ketones are well tolerated, producing the expected 1,6-hydroalkylation products with moderate to good yields. Step-by-step control experiments and DFT calculation were conducted systematically to gain insights for the plausible reaction mechanism. This finding may have potential application in the selective diarylmethylation of ketones at the α-C position in organic synthesis.

8.
Inorg Chem ; 62(3): 1202-1209, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622043

RESUMO

The excited-state manipulation of the phosphorescent iridium(III) complexes plays a vital role in their photofunctional applications. The development of the molecular design strategy promotes the creative findings of novel iridium(III) complexes. The current molecular design strategies for iridium(III) complexes mainly depend on the selective cyclometalation of the ligands with the iridium(III) ion, which is governed by the steric hindrance of the ligand during the cyclometalation. Herein, a new molecular design strategy (i.e., random cyclometalation strategy) is proposed for the effective excited-state manipulation of phosphorescent cyclometalated iridium(III) complexes. Two series of new and separable methoxyl-functionalized isomeric iridium(III) complexes are accessed by a one-pot synthesis via random cyclometalation, resulting in a dramatic tuning of the phosphorescence peak wavelength (∼57 nm) and electrochemical properties attributed to the high sensitivity of their excited states to the position of the methoxyl group. These iridium(III) complexes show intense phosphorescence ranging from the yellow (567 nm) to the deep-red (634 nm) color with high photoluminescence quantum yields of up to 0.99. Two deep-red emissive iridium(III) complexes with short decay lifetimes are further utilized as triplet emitters to afford efficient solution-processed electroluminescence with reduced efficiency roll-offs.

9.
Chem Soc Rev ; 51(6): 1926-1982, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35083990

RESUMO

With the upcoming trend of Big Data era, some new types of memory technologies have emerged as substitutes for the traditional Si-based semiconductor memory devices, which are encountering severe scaling down technical obstacles. In particular, the resistance random access memory (RRAM) and magnetic random access memory (MRAM) hold great promise for the in-memory computing, which are regarded as the optimal strategy and pathway to solve the von Neumann bottleneck by high-throughput in situ data processing. As far as the active materials in RRAM and MRAM are concerned, organic semiconducting materials have shown increasing application perspectives in memory devices due to their rich structural diversity and solution processability. With the introduction of metal elements into the backbone of molecules, some new properties and phenomena will emerge accordingly. Consequently, the RRAM and MRAM devices based on metal-containing organic compounds (including the small molecular metal complexes, metallopolymers, metal-organic frameworks (MOFs) and organic-inorganic-hybrid perovskites (OIHPs)) have been widely explored and attracted intense attention. In this review, we highlight the fundamentals of RRAM and MRAM, as well as the research progress of the applications of metal-containing organic compounds in both RRAM and MRAM. Finally, we discuss the challenges and future directions for the research of organic RRAM and MRAM.

10.
Nano Lett ; 22(10): 4246-4252, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35575706

RESUMO

Significant advancements in perovskite light-emitting diodes (PeLEDs) based on ITO glass substrates have been realized in recent years, yet the overall performance of flexible devices still lags far behind, mainly being ascribed to the high surface roughness and poor optoelectronic properties of flexible electrodes. Here, we report efficient and robust flexible PeLEDs based on a mixed-dimensional (0D-1D-2D-3D) composite electrode consisting of 0D Ag nanoparticles (AgNPs)/1D Ag nanowires (AgNWs)/2D MXene/3D poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Our designed MXene-based electrodes combine the advantages of facile formation of a film of low-dimensional materials and excellent optical and electrical properties of metal, inorganic, and organic semiconductors, which endow the electrodes with high electrical/thermal conductivity, flexibility, a smooth surface, and good transmittance. Consequently, the resulting flexible PeLEDs (without a light-coupling structure) demonstrate a record external quantum efficiency of 16.5%, a high luminance of close to 50000 cd/m2, a large emitting area of 8 cm2, and significantly enhanced mechanical stability.

11.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
12.
Angew Chem Int Ed Engl ; 62(8): e202218343, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36562768

RESUMO

Two-dimensional metal-organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g-1 at 0.1 A g-1 and 173.1 mAh g-1 at 4 A g-1 ) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g-1 .

13.
Angew Chem Int Ed Engl ; 62(18): e202218947, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867540

RESUMO

Developing deep-blue thermally activated delayed fluorescence (TADF) emitters with both high efficiency and color purity remains a formidable challenge. Here, we proposed a design strategy by integrating asymmetric oxygen-boron-nitrogen (O-B-N) multi-resonance (MR) unit into traditional N-B-N MR molecules to form a rigid and extended O-B-N-B-N MR π-skeleton. Three deep-blue MR-TADF emitters of OBN, NBN and ODBN featuring asymmetric O-B-N, symmetric N-B-N and extended O-B-N-B-N MR units were synthesized through the regioselective one-shot electrophilic C-H borylation at different positions of the same precursor. The proof-of-concept emitter ODBN exhibited respectable deep-blue emission with Commission International de l'Eclairage coordinate of (0.16, 0.03), high photoluminescence quantum yield of 93 % and narrow full width at half maximum of 26 nm in toluene. Impressively, the simple trilayer OLED employing ODBN as emitter achieved a high external quantum efficiency up to 24.15 % accompanied by a deep blue emission with the corresponding CIE y coordinate below 0.1.

14.
J Am Chem Soc ; 144(33): 15143-15154, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35947444

RESUMO

The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.

15.
Inorg Chem ; 61(44): 17703-17712, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36287746

RESUMO

The development of highly efficient cyclometalated phosphorescent iridium(III) complexes is greatly promoted by their rational molecular design. Manipulating the excited states of iridophosphors could endow them with appealing photophysical properties, which play vital roles in triplet state-related photofunctional applications (e.g., electroluminescence, photodynamic therapy, etc.). In general, the most effective approach for decreasing the emission energies of iridophosphors is to extend the π-skeleton of ligands. However, the π-extension strategy often results in decreased solubility, lower synthetic yield, decreased photoluminescence quantum yield, and so forth. In this work, a simple yet efficient strategy is proposed for the effective excited-state manipulation of 2-phenyllepidine-based iridophosphors. Surprisingly, dramatic tuning of phosphorescence wavelength (∼70 nm) is achieved by simply controlling the position of a single methoxyl substituent on these iridophosphors. An oxygen-responsive iridophosphor featuring far-red emission (660 nm), long emission lifetime (1.60 µs), and high singlet oxygen quantum yield (0.73) is employed to realize accurate oxygen sensing in vitro and in vivo, and it also shows efficient photodynamic therapy in cancer cells, making it a promising candidate for the efficient image-guided photodynamic therapeutic agent. This molecular design strategy clearly demonstrates the advantages of designing novel long-wavelength emissive iridophosphors without increasing the π-conjugation of the ligand.


Assuntos
Fotoquimioterapia , Humanos , Irídio , Oxigênio Singlete , Hipóxia , Ligantes , Oxigênio
16.
Molecules ; 27(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807497

RESUMO

Trialkyl and triaryl phosphines are important classes of ligands in the field of catalysis and materials research. The wide usability of these low-valent phosphines has led to the design and development of new synthesis routes for a variety of phosphines. In the present work, we report the synthesis and characterization of some mixed arylalkyl tertiary phosphines via the Grignard approach. A new asymmetric phosphine is characterized extensively by multi-spectroscopic techniques. IR and UV-Vis spectra of some selected compounds are also compared and discussed. Density functional theory (DFT)-calculated results support the formation of the new compounds.


Assuntos
Fosfinas , Catálise , Ligantes , Fosfinas/química
17.
J Am Chem Soc ; 143(43): 18317-18324, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34694133

RESUMO

Excitation-wavelength-dependent (Ex-De) emission materials show excellent potential in diverse advanced photonic areas. Of significant importance is the on-demand regulation of the Ex-De luminescence behavior of these materials, which is previously unprecedented. In this study, we report on a platinum(II) complex-based phosphorescent soft salt S1 ([Pt(tpp)(ed)]+[Pt(ftpp)(CN)2]- (where ttp = 2-(4-(trifluoromethyl)phenyl)pyridine, ed = ethane-1,2-diamine, and ftpp = 2-(4-fluoro-3-(trifluoromethyl)phenyl)pyridine)) with Ex-De photoluminescence (PL) property. UV-visible absorption and PL spectra of S1 were recorded in DMSO-H2O mixture (1 × 10-3 M) with various H2O fractions to investigate its ground and excited states. Interestingly, the PL spectra of S1 powder show that its maximum emission peak is red-shifted from 595 to 644 nm upon excitation at different wavelengths from 360 to 520 nm, accompanied by an obvious emission color change from yellow-orange to red. Furthermore, confocal laser scanning fluorescence microscopy was employed to determine the PL property of self-assembled uniform S1 nanostructure, and the result shows that the Ex-De emission behavior is absent. On the basis of these results, we conclude the various Pt(II)···Pt(II) distances that exist are the major factor responsible for the properties of the Ex-De PL of S1 powder. Thus, for the first time, reversible on-off switching of Ex-De PL of S1 was achieved by manipulating its Pt(II)···Pt(II) distances through mechanical stress and vapor fuming. Finally, we demonstrate the high-level anticounterfeiting applications via on-demand multicolor displays.

18.
J Org Chem ; 86(2): 1516-1527, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33406835

RESUMO

A simple and efficient method for the regioselective thiolation of p-quinone methides with sodium aryl/alkyl sulfinates has been established using an acid/phosphine-induced radical route under transition-metal-free conditions. A broad range of sodium aryl/alkyl sulfinates and p-quinone methides (p-QMs) are compatible for the reaction, giving the expected products with good to excellent yields. Control experiments were also performed to gain insights into the generation mechanism of thiyl radicals and hydrogen-atom transfer process. This protocol provides a safe and feasible way for the formation of carbon-sulfur bonds.

19.
J Org Chem ; 86(21): 14983-15003, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34665625

RESUMO

A simple and efficient method for the silver-catalyzed regioselective phosphorylation of para-quinone methides (p-QMs) with P(III)-nucleophiles (P(OR)3, ArP(OR)2, Ar2P-OR) has been established via Michaelis-Arbuzov-type reaction. A broad range of P(III)-nucleophiles and para-quinone methides are well tolerated under the mild conditions, giving the expected diarylmethyl-substituted organophosphorus compounds with good to excellent yields. Moreover, a series of corresponding enantiomers can be obtained by employing dialkyl arylphosphonite (ArP(OR)2) as substrates. The control experiments and 31P NMR tracking experiments were also performed to gain insights for the plausible reaction mechanism. This protocol may have significant implications for the formation of C(sp3)-P bonds in Michaelis-Arbuzov-type reactions.


Assuntos
Indolquinonas , Prata , Catálise , Fosforilação
20.
Inorg Chem ; 60(10): 7510-7518, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33896189

RESUMO

A new platinum(II) complex-based soft salt S1, ([Pt(tpp)(ed)]+[Pt(pba) (CN)2]-) (tpp = 2-(4-(trifluoromethyl)phenyl)pyridine, ed = ethane-1,2-diamine, pba = 4-(2-pyridyl)benzaldehyde), was designed and synthesized. UV-visible absorption and photoluminescence (PL) spectra were studied to elucidate the nature of ground and excited states. The soft salt complex was found to show self-assembly properties with the assistance of electrostatic, π-π stacking, and Pt···Pt interactions, resulting in the remarkable emergence of low-energy absorption and PL bands. Morphological transformation of S1 from undefined nanosized aggregates to nanofibers with different solvent compositions has been demonstrated. Interestingly, a luminescent polymer film was prepared by doping S1 into a polyethylene glycol matrix. The film displayed distinctive emission color change from yellow to red upon heating. Eventually, a high-level anti-counterfeiting application was accomplished using a time-resolved imaging technique based on the thermochromic luminescence property and long emission decay time displayed by S1. It is anticipated that this work can provide deep insights into the control of intermolecular interactions between cationic and anionic complexes of soft salt upon exposure to different external stimuli, resulting in the development of smart luminescent materials for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA