Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neurochir (Wien) ; 166(1): 381, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325068

RESUMO

BACKGROUND: Detection and localization of cerebral microbleeds (CMBs) is crucial for disease diagnosis and treatment planning. However, CMB detection is labor-intensive, time-consuming, and challenging owing to its visual similarity to mimics. This study aimed to validate the performance of a three-dimensional (3D) deep learning model that not only detects CMBs but also identifies their anatomic location in real-world settings. METHODS: A total of 21 patients with 116 CMBs and 12 without CMBs were visited in the neurosurgery outpatient department between January 2023 and October 2023. Three readers, including a board-certified neuroradiologist (reader 1), a resident in radiology (reader 2), and a neurosurgeon (reader 3) independently reviewed SWIs of 33 patients to detect CMBs and categorized their locations into lobar, deep, and infratentorial regions without any AI assistance. After a one-month washout period, the same datasets were redistributed randomly, and readers reviewed them again with the assistance of the 3D deep learning model. A comparison of the diagnostic performance between readers with and without AI assistance was performed. RESULTS: All readers with an AI assistant (reader 1:0.991 [0.930-0.999], reader 2:0.922 [0.881-0.905], and reader 3:0.966 [0.928-0.984]) tended to have higher sensitivity per lesion than readers only (reader 1:0.905 [0.849-0.942], reader 2:0.621 [0.541-0.694], and reader 3:0.871 [0.759-0.935], p = 0.132, 0.017, and 0.227, respectively). In particular, radiology residents (reader 2) showed a statistically significant increase in sensitivity per lesion when using AI. There was no statistically significant difference in the number of FPs per patient for all readers with AI assistant (reader 1: 0.394 [0.152-1.021], reader 2: 0.727 [0.334-1.582], reader 3: 0.182 [0.077-0.429]) and reader only (reader 1: 0.364 [0.159-0.831], reader 2: 0.576 [0.240-1.382], reader 3: 0.121 [0.038-0.383], p = 0.853, 0.251, and 0.157, respectively). Our model accurately categorized the anatomical location of all CMBs. CONCLUSIONS: Our model demonstrated promising potential for the detection and anatomical localization of CMBs, although further research with a larger and more diverse population is necessary to establish clinical utility in real-world settings.


Assuntos
Hemorragia Cerebral , Aprendizado Profundo , Imageamento Tridimensional , Humanos , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/cirurgia , Hemorragia Cerebral/diagnóstico , Feminino , Masculino , Imageamento Tridimensional/métodos , Idoso , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos
2.
Korean J Radiol ; 24(1): 51-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36606620

RESUMO

OBJECTIVE: To develop and test a machine learning model for classifying human papillomavirus (HPV) status of patients with oropharyngeal squamous cell carcinoma (OPSCC) using 18F-fluorodeoxyglucose (18F-FDG) PET-derived parameters in derived parameters and an appropriate combination of machine learning methods in patients with OPSCC. MATERIALS AND METHODS: This retrospective study enrolled 126 patients (118 male; mean age, 60 years) with newly diagnosed, pathologically confirmed OPSCC, that underwent 18F-FDG PET-computed tomography (CT) between January 2012 and February 2020. Patients were randomly assigned to training and internal validation sets in a 7:3 ratio. An external test set of 19 patients (16 male; mean age, 65.3 years) was recruited sequentially from two other tertiary hospitals. Model 1 used only PET parameters, Model 2 used only clinical features, and Model 3 used both PET and clinical parameters. Multiple feature transforms, feature selection, oversampling, and training models are all investigated. The external test set was used to test the three models that performed best in the internal validation set. The values for area under the receiver operating characteristic curve (AUC) were compared between models. RESULTS: In the external test set, ExtraTrees-based Model 3, which uses two PET-derived parameters and three clinical features, with a combination of MinMaxScaler, mutual information selection, and adaptive synthetic sampling approach, showed the best performance (AUC = 0.78; 95% confidence interval, 0.46-1). Model 3 outperformed Model 1 using PET parameters alone (AUC = 0.48, p = 0.047) and Model 2 using clinical parameters alone (AUC = 0.52, p = 0.142) in predicting HPV status. CONCLUSION: Using oversampling and mutual information selection, an ExtraTree-based HPV status classifier was developed by combining metabolic parameters derived from 18F-FDG PET/CT and clinical parameters in OPSCC, which exhibited higher performance than the models using either PET or clinical parameters alone.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/diagnóstico por imagem , Fluordesoxiglucose F18 , Papillomavirus Humano , Aprendizado de Máquina , Neoplasias Orofaríngeas/diagnóstico , Infecções por Papillomavirus/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Feminino
3.
Nanoscale Res Lett ; 12(1): 353, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28511534

RESUMO

We investigate the ferroelectric state of a tetragonal BiFeO3 thin film grown on a LaAlO3 (001) substrate using an optical second harmonic generation (SHG) microscope. Whereas the ferroelectric state of this material hosts nanometer-sized domains which again form micrometer-sized domains of four different configurations, we could figure out the characteristic features of each domain from the SHG mapping with various sizes of the probe beam, i.e., from 0.7 to 3.9 µm in its diameter. In particular, we demonstrate that a single micrometer-sized domain contributes to the SHG as a coherent summation of the constituent nanometer-sized domains, and multi-micrometer-sized domains contribute to the SHG as an incoherent summation of each micro-domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA