Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2321958121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748584

RESUMO

Understanding the stability mechanism of surface micro/nanobubbles adhered to gas-evolving electrodes is essential for improving the efficiency of water electrolysis, which is known to be hindered by the bubble coverage on electrodes. Using molecular simulations, the diffusion-controlled evolution of single electrolytic nanobubbles on wettability-patterned nanoelectrodes is investigated. These nanoelectrodes feature hydrophobic islands as preferential nucleation sites and allow the growth of nanobubbles in the pinning mode. In these simulations, a threshold current density distinguishing stable nanobubbles from unstable nanobubbles is found. When the current density remains below the threshold value, nucleated nanobubbles grow to their equilibrium states, maintaining their nanoscopic size. However, for the current density above the threshold value, nanobubbles undergo unlimited growth and can eventually detach due to buoyancy. Increasing the pinning length of nanobubbles increases the degree of nanobubble instability. By connecting the current density with the local gas oversaturation, an extension of the stability theory for surface nanobubbles [Lohse and Zhang, Phys. Rev. E 91, 031003(R) (2015)] accurately predicts the nanobubble behavior found in molecular simulations, including equilibrium contact angles and the threshold current density. For larger systems that are not accessible to molecular simulations, continuum numerical simulations with the finite difference method combined with the immersed boundary method are performed, again demonstrating good agreement between numerics and theories.

2.
J Am Chem Soc ; 146(14): 10177-10186, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38538570

RESUMO

The evolution of electrogenerated gas bubbles during water electrolysis can significantly hamper the overall process efficiency. Promoting the departure of electrochemically generated bubbles during (water) electrolysis is therefore beneficial. For a single bubble, a departure from the electrode surface occurs when buoyancy wins over the downward-acting forces (e.g., contact, Marangoni, and electric forces). In this work, the dynamics of a pair of H2 bubbles produced during the hydrogen evolution reaction in 0.5 M H2SO4 using a dual platinum microelectrode system is systematically studied by varying the electrode distance and the cathodic potential. By combining high-speed imaging and electrochemical analysis, we demonstrate the importance of bubble-bubble interactions in the departure process. We show that bubble coalescence may lead to substantially earlier bubble departure as compared to buoyancy effects alone, resulting in considerably higher reaction rates at a constant potential. However, due to continued mass input and conservation of momentum, repeated coalescence events with bubbles close to the electrode may drive departed bubbles back to the surface beyond a critical current, which increases with the electrode spacing. The latter leads to the resumption of bubble growth near the electrode surface, followed by buoyancy-driven departure. While less favorable at small electrode spacing, this configuration proves to be very beneficial at larger separations, increasing the mean current up to 2.4 times compared to a single electrode under the conditions explored in this study.

3.
Langmuir ; 40(11): 5934-5944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451220

RESUMO

Diffusiophoresis, the movement of particles under a solute concentration gradient, has practical implications in a number of applications, such as particle sorting, focusing, and sensing. For diffusiophoresis in an electrolyte solution, the particle velocity is described by the electrolyte relative concentration gradient and the diffusiophoretic mobility of the particle. The electrolyte concentration, which typically varies throughout the system in space and time, can also influence the zeta potential of particles in space and time. This variation affects the diffusiophoretic behavior, especially when the zeta potential is highly dependent on the electrolyte concentration. In this work, we show that adsorbing a single bilayer (or 4 bilayers) of a polyelectrolyte pair (PDADMAC/PSS) on the surface of microparticles resulted in effectively constant zeta potential values with respect to salt concentration throughout the experimental range of salt concentrations. This allowed a constant potential model for diffusiophoretic transport to describe the experimental observations, which was not the case for uncoated particles in the same electrolyte system. This work highlights the use of simple polyelectrolyte pairs to tune the zeta potential and maintain constant values for precise control of diffusiophoretic transport.

4.
Langmuir ; 39(6): 2322-2332, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36708332

RESUMO

Chemically induced transport methods open up new opportunities for colloidal transport in dead-end channel geometries. Diffusiophoresis, which describes particle movement under an electrolyte concentration gradient, has previously been demonstrated in dead-end channels. The presence of solute concentration gradients in such channels induces particle motion (phoresis) and fluid flow along solid walls (osmosis). The particle velocity inside a dead-end channel is thus influenced by particle diffusiophoresis and wall diffusio-osmosis. The magnitude of phoresis and osmosis depends on the solute's relative concentration gradient, the electrokinetic parameters of the particle and the wall, and the diffusivity contrast of cations and anions. Although it is known that some of those parameters are affected by electrolyte concentration, e.g., zeta potential, research to date often interprets results using averaged and constant zeta potential values. In this work, we demonstrate that concentration-dependent zeta potentials are essential when the zeta potential strongly depends on electrolyte concentration for correctly describing the particle transport inside dead-end channels. Simulations including concentration-dependent zeta potentials for the particle and wall matched with experimental observations, whereas simulations using constant, averaged zeta potentials failed to capture particle dynamics. These results contribute to the fundamental understanding of diffusiophoresis and the diffusio-osmosis process.

5.
Langmuir ; 38(10): 3040-3050, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230108

RESUMO

A surface-driven flow is generated during the electrocatalytic reaction of a platinum-gold bielectrode within hydrogen peroxide. This flow can be experimentally visualized and quantified using micrometer-sized particles that are transported by a flow field. Tracer particles, which possess an inherent surface charge, also interact with the induced electric field and exhibit a collective behavior at the surface of the electrodes where they accumulate. The underlying mechanism for the accumulation dynamics demonstrated by these catalytic pump systems has so far been lacking. In this work, the accumulation dynamics and kinetics were experimentally investigated. With use of numerical simulations, we demonstrate that the self-driven particle accumulation is controlled by a positive dielectrophoretic force, mediated by the reaction-induced electric and flow field. These results contribute to the fundamental knowledge on immobilized bimetallic systems.

6.
Biotechnol Bioeng ; 117(10): 3040-3052, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32568408

RESUMO

The use of bioreactors coupled to membrane-based perfusion systems enables very high cell and product concentrations in vaccine and viral vector manufacturing. Many virus particles, however, are not stable and either lose their infectivity or physically degrade resulting in significant product losses if not harvested continuously. Even hollow fiber membranes with a nominal pore size of 0.2 µm can retain much smaller virions within a bioreactor. Here, we report on a systematic study to characterize structural and physicochemical membrane properties with respect to filter fouling and harvesting of yellow fever virus (YFV; ~50 nm). In tangential flow filtration perfusion experiments, we observed that YFV retention was only marginally determined by nominal but by effective pore sizes depending on filter fouling. Evaluation of scanning electron microscope images indicated that filter fouling can be reduced significantly by choosing membranes with (i) a flat inner surface (low boundary layer thickness), (ii) a smooth material structure (reduced deposition), (iii) a high porosity (high transmembrane flux), (iv) a distinct pore size distribution (well-defined pore selectivity), and (v) an increased fiber wall thickness (larger effective surface area). Lowest filter fouling was observed with polysulfone (PS) membranes. While the use of a small-pore PS membrane (0.08 µm) allowed to fully retain YFV within the bioreactor, continuous product harvesting was achieved with the large-pore PS membrane (0.34 µm). Due to the low protein rejection of the latter, this membrane type could also be of interest for other applications, that is, recombinant protein production in perfusion cultures.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/virologia , Filtração/instrumentação , Tamanho da Partícula , Perfusão/métodos , Vírus/crescimento & desenvolvimento , Linhagem Celular , Membranas Artificiais , Vírus/isolamento & purificação
7.
Langmuir ; 36(26): 7400-7407, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32498516

RESUMO

Nanoporous graphene displays salt-dependent ion permeation. In this work, we investigate the differences in Donnan potentials arising between reservoirs, separated by a perforated graphene membrane, containing different cations. We compare the case of monovalent cations interacting with nanoporous graphene with the case of bivalent cations. This is accomplished through both measurements of membrane potential arising between two salt reservoirs at different concentrations involving a single cation (ionic potential) and between two reservoirs containing different cations at the same concentration (bi-ionic potential). In our present study, Donnan dialysis experiments involve bivalent MgCl2, CaCl2, and CuCl2 as well as monovalent KCl and NH4Cl salts. For all salts, except CuCl2, clear Donnan and diffusion potential plateaus were observed at low and high salt concentrations, respectively. Our observations show that the membrane potential scaled to the Nernst potential for bivalent cations has a lower value (≈50%) than for monovalent cations (≈72%) in the Donnan exclusion regime. This is likely due to the adsorption of these bivalent cations on monolayer graphene. For bivalent cations, the diffusion regime is reached at a lower ionic strength compared to the monovalent cations. For Mg2+ and Ca2+, the membrane potential does not seem to depend upon the type of ions in the entire ionic strength range. A similar behavior is observed for the KCl and NH4Cl membrane potential curves. For CuCl2, the membrane potential curve is shifted toward lower ionic strength compared to the other two bivalent salts and the Donnan plateau is not observed at the lowest ionic strength. Bi-ionic potential measurements give further insight into the strength of specific interactions, allowing for the estimation of the relative ionic selectivities of different cations based on comparing their bi-ionic potentials. This effect of possible ion adsorption on graphene can be removed through ion exchange with monovalent salts.

8.
Biotechnol Bioeng ; 115(7): 1705-1716, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29578576

RESUMO

Bioelectrochemical systems (BESs) have the potential to contribute to the energy revolution driven by the new bio-economy. Until recently, simple reactor designs with minimal process analytics have been used. In recent years, assemblies to host electrodes in bioreactors have been developed resulting in so-called "electrobioreactors." Bioreactors are scalable, well-mixed, controlled, and therefore widely used in biotechnology and adding an electrode extends the possibilities to investigate bioelectrochemical production processes in a standard system. In this work, two assemblies enabling a separated and non-separated electrochemical operation, respectively, are designed and extensively characterized. Electrochemical losses over the electrolyte and the membrane were comparable to H-cells, the bioelectrochemical standard reaction system. An effect of the electrochemical measurements on pH measurements was observed if the potential is outside the range of -1,000 to +600 mV versus Ag/AgCl. Electrobiotechnological characterization of the two assemblies was done using Shewanella oneidensis as an electroactive model organism. Current production over time was improved by a separation of anodic and cathodic chamber by a Nafion® membrane. The developed electrobioreactor was used for a scale-up of the anaerobic bioelectrochemical production of organic acids and lysine from glucose using an engineered Corynebacterium glutamicum. Comparison to a small-scale custom-made electrobioreactor indicates that anodic electro-fermentation of lysine and organic acids might not be limited by the BES setup but by the biocatalysis of the cells.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Ácidos Carboxílicos/metabolismo , Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Anaerobiose , Fermentação
9.
Langmuir ; 34(7): 2455-2463, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29345950

RESUMO

In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is strongly affected by the geometry of the membrane. A reduction in the resistance of approximately 50% can be obtained when the structure size is similar to the mixing layer (ML) thickness, resulting in confined vortices with less lateral motion compared to the case of flat membranes. From electrical, flow, and concentration measurements, ion migration, advection, and diffusion are quantified, respectively. Advection and migration are dominant in the vortex ML, whereas diffusion and migration are dominant in the stagnant diffusion layer. Numerical simulations, based on Poisson-Nernst-Planck and Navier-Stokes equations, show similar ion transport and flow characteristics, highlighting the importance of membrane topology on the resulting electrokinetic and electrohydrodynamic behavior.

10.
Soft Matter ; 14(10): 1780-1788, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424843

RESUMO

Liquid-infused membranes inspired by slippery liquid-infused porous surfaces (SLIPS) have been recently introduced to membrane technology. The gating mechanism of these membranes is expected to give rise to anti-fouling properties and multi-phase transport capabilities. However, the long-term retention of the infusion liquid has not yet been explored. To address this issue, we investigate the retention of the infusion liquid in slippery liquid-infused membranes (SLIMs) via liquid-liquid displacement porometry (LLDP) experiments combined with microscopic observations of the displacement mechanism. Our results reveal that pores will be opened corresponding to the capillary pressure, leading to preferential flow pathways for water transport. The LLDP results further suggest the presence of liquid-lined pores in SLIM. This hypothesis is analyzed theoretically using an interfacial pore flow model. We find that the displacement patterns correspond to capillary fingering in immiscible displacement in porous media. The related physics regarding two-phase flow in porous media is used to confirm the permeation mechanism appearing in SLIMs. In order to experimentally observe liquid-liquid displacement, a microfluidic chip mimicking a porous medium is designed and a highly ramified structure with trapped infusion liquid is observed. The remaining infusion liquid is retained as pools, bridges and thin films around pillar structures in the chip, which further confirms liquid-lining. Fractal dimension analysis, along with evaluation of the fluid (non-wetting phase) saturation, further confirms that the fractal patterns correspond to capillary fingering, which is consistent with an invasion percolation with trapping (IPT) model.

11.
Phys Chem Chem Phys ; 19(41): 28232-28238, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29027561

RESUMO

Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.

12.
Langmuir ; 32(37): 9619-32, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27541583

RESUMO

The formation of ordered and regularly shaped structures of colloidal particles with the aid of spatially nonuniform electric fields is a modern research area of great interest. This work illustrates how alternating current (AC) electrokinetic effects (dielectrophoresis, electroosmosis) can serve as contact-free templates, inside which colloidal microspheres can assemble into a variety of shapes and sizes. We show how three-dimensional colloidal structures of square, circular, and diamond shape of many tens of micrometers in size can be reproducibly formed with a single set of quadrupolar microelectrodes. Numerical simulations performed help to explain the role of AC electroosmosis and AC dielectrophoresis on the shaping of these structures as a function of applied voltage and frequency. We also demonstrate how the templating repertoire is further enhanced with the simultaneous application of a second, individually controlled AC electric field, which enables a variety of asymmetric colloidal structures to be produced using the same set of quadrupolar microelectrodes. As the preservation of shape and size of such electric-field templated structures after medium evaporation still remains a big challenge, here we also report on a novel method that permits the stabilization and isolation of these particle assemblies through medium gelation and subsequent hydrogel removal with a UV/ozone treatment.

13.
Langmuir ; 30(16): 4623-32, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24702525

RESUMO

In this paper, the surface element integration (SEI) method was used derive analytical force/potential versus distance profiles for two non-DLVO forces: Lewis acid-base and solvation forces. These forces are highly relevant in a variety of systems, from bacterial adhesion, nanoparticle suspension stability to atomic force microscopy (AFM) profiles. The SEI-derived expressions were compared with the more commonly utilized Derjaguin approximations in order to assess the effect of curvature on the resulting interaction for the test cases of sphere-flat plate and equally sized spheres. For acid-base interactions, the deviation was found to be significant for particles up to 40 nm in diameter for the conventionally used decay length (λ = 1 nm) for water. The resulting expressions show that accounting in curvature for acid-base interactions is important even for simple smooth geometric shapes, recovering the Derjaguin expression at smaller values of λ/R. These results allow for correction of the acid-base force/potential versus distance from the Derjaguin-derived expressions using simple functions of λ/R. Conversely, for the solvation force the deviation was far less significant due to the oscillatory nature of the potential damping out effects and the smaller order of magnitude range of the solvation decay length, indicating that for solvation forces the Derjaguin approximation is suitable for most conceivable cases.

14.
J Phys Chem B ; 128(24): 5874-5887, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38837230

RESUMO

Diffusiophoresis is the movement of the colloidal particles in response to a concentration gradient and can be observed for both electrolyte (e.g., salt) and nonelectrolyte (e.g., glucose) solutes. Here, we investigated the diffusiophoretic behavior of polystyrene (PS-carboxylate surface) microparticles in nonadsorbing charged and uncharged solute gradients [sodium polystyrenesulfonate (NaPSS), polyethylene glycol (PEG), and nanoscale colloidal silica (SiO2)] using a dead-end channel setup. We compared the diffusiophoretic motion in these gradient types with each other and to the case of using a monovalent salt gradient. In each of the nonadsorbing gradient systems (NaPSS, PEG, and SiO2 nanoparticles), the PS particles migrated toward the lower solute concentration. The exclusion distance values (from the initial position) of particles were recorded within the dead-end channel, and it was found that an increase in solute concentration increases exclusion from the main channel. In the polyelectrolyte case, the motion of PS microparticles was reduced by the addition of a background salt due to reduced electrostatic interaction, whereas it remained constant when using the neutral polymer. Particle diffusiophoresis in gradients of polyelectrolytes (charged macromolecules) is quite similar to the behavior when using a PEG gradient (uncharged macromolecule) in the presence of a background electrolyte. Moreover, we observed PS microparticles under different concentrations and molecular weights of PEG gradients. By combining the simulations, we estimated the exclusion length, which was previously proposed to be the order of the polymer radius. Furthermore, the movement of PS microparticles was analyzed in the gradient of silica nanoparticles. The exclusion distance was higher in silica nanoparticle gradients compared to similar-size PEG gradients because silica nanoparticles are charged. The diffusiophoretic transport of the PS microparticles could be simulated by considering the interaction between the PS microparticles and silica nanoparticles.

15.
ACS Appl Mater Interfaces ; 16(24): 31703-31708, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38858131

RESUMO

Metal-organic framework (MOF) films can be used in various applications. In this work, we propose a method that can be used to synthesize MOF films localized on a single side of an anion exchange membrane, preventing the transport of the metal precursor via Donnan exclusion. This is advantageous compared to the related contra-diffusion method that results in the growth of a MOF film on both sides of the support, differing in quality on both sides. Our proposed method has the advantage that the synthesis conditions can potentially be tuned to create the optimal conditions for crystal growth on a single side. The localized growth of the MOF is governed by Donnan exclusion of the anion exchange membrane, preventing metal ions from passing to the other compartment, and this leads to a local control of the precursor stoichiometry. In this work, we show that our method can localize the growth of both Cu-BTC and ZIF-8 in water and in methanol, respectively, highlighting that this method can used for preparing a variety of MOF films with varying characteristics using soluble precursors at room temperature.

16.
Ind Eng Chem Res ; 62(7): 3294-3306, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36853617

RESUMO

In order to understand the ion transport in a continuous cross-flow shock electrodialysis process better, numerous theoretical studies have been carried out. One major assumption involved in these models has been that of a constant surface charge. In this work, we considered the influence of charge regulation, caused by changes in salt concentration, on the performance of a shock electrodialysis cell. Our results show that, by including charge regulation, much higher potentials need to be applied to reach the same degree of desalination, compared to the constant surface charge model. Furthermore, we found that operating at higher potentials could lead to substantial Joule heating and therefore temperature increases. Although somewhat lower potentials were required in the nonisothermal case versus the isothermal case with charge regulation, the required energy input for desalination is still much higher than the thermodynamic minimum. This works highlights the important role charge regulation can play in a shock electrodialysis process.

17.
Langmuir ; 28(9): 4586-97, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22324312

RESUMO

The use of spatially nonuniform electric fields for the contact-free colloidal particle assembly into ordered structures of various length scales is a research area of great interest. In the present work, numerical simulations are undertaken in order to advance our understanding of the physical mechanisms that govern this colloidal assembly process and their relation to the electric field characteristics and colloidal system properties. More specifically, the electric-field driven assembly of colloidal silica (d(p) = 0.32 and 2 µm) in DMSO, a near index matching fluid, is studied numerically over a range of voltages and concentration by means of a continuum thermodynamic approach. The equilibrium (u(f) = 0) and nonequilibrium (u(f) ≠ 0) cases were compared to determine whether fluid motion had an effect on the shape and size of assemblies. It was found that the nonequilibrium case was substantially different versus the equilibrium case, in both size and shape of the assembled structure. This dependence was related to the relative magnitudes of the electric-field driven convective motion of particles versus the fluid velocity. Fluid velocity magnitudes on the order of mm/s were predicted for 0.32 µm particles at 1% initial solids content, and the induced fluid velocity was found to be larger at the same voltage/initial volume fraction as the particle size decreased, owing to a larger contribution from entropic forces.


Assuntos
Coloides/química , Eletroquímica/métodos , Dióxido de Silício/química , Termodinâmica
18.
Langmuir ; 27(2): 575-81, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21142098

RESUMO

A novel method for the preparation of concentrated, colloidally stable, translucent polymer nanolatexes is presented. Herein nanolatexes are obtained from emulsion polymerization, utilizing the potential of catalytic chain transfer to enhance the particle nucleation efficiency. Low amounts of emulsifier are required (<8% w/w based on monomer) while the nanolatexes concentration can be increased to 40% w/w. The nanolatexes are translucent in appearance, which was correlated to the average particle size and width of the particle size distribution using Mie theory. Increasing the nanolatex concentration was found to have no deteriorating effect on either the optical or colloidal properties. Preparing translucent nanolatexes via this method is advantageous, as the amount of emulsifier is significantly reduced without sacrificing the optical transparency or the high interfacial surface area of the polymer colloids.


Assuntos
Nanoestruturas/química , Polímeros/síntese química , Emulsões/síntese química , Emulsões/química , Tamanho da Partícula , Polímeros/química
19.
J Phys Chem C Nanomater Interfaces ; 125(45): 24876-24886, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34824659

RESUMO

Immobilized bimetallic structures generate fluid flow during electrocatalytic reactions with hydrogen peroxide, which is typically driven from the anodic metal to the cathodic metal similar to an electroosmotic flow. However, under low reactive regimes, the generated flow becomes fully reversed, which cannot be explained by the classical electroosmotic theory. This work aims at unraveling the origin and dynamics of this flow hysteresis through a combined experimental and numerical approach. The key electrocatalytic parameters that contribute to flow reversal are analyzed experimentally and numerically under low reactive regimes induced by bulk pH variations. The proton gradient that initiates chemomechanical actuation is probed with the use of fluorescence lifetime imaging. The fluid flow dynamics under reactive regimes are visualized by the use of particle tracking. Our numerical simulations elucidate the role of pH variations and additional ionic species (counterions) toward flow reversal. The combination of these techniques highlights the interplay between electrocatalytic and electrokinetic phenomena on the occurrence of flow reversal.

20.
ACS Omega ; 6(4): 2487-2493, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553867

RESUMO

In this work, we have studied the pH-dependent surface charge nature of nanoporous graphene. This has been investigated by membrane potential and by streaming current measurements, both with varying pH. We observed a lowering of the membrane potential with decreasing pH for a fixed concentration gradient of potassium chloride (KCl) in the Donnan dominated regime. Interestingly, the potential reverses its sign close to pH 4. The fitted value of effective fixed ion concentration (C̅ R) in the membrane also follows the same trend. The streaming current measurements show a similar trend with sign reversal around pH 4.2. The zeta potential data from the streaming current measurement is further analyzed using a 1-pK model. The model is used to determine a representative pK (acid-base equilibrium constant) of 4.2 for the surface of these perforated graphene membranes. In addition, we have also theoretically investigated the effect of the PET support in our membrane potential measurement using numerical simulations. Our results indicate that the concentration drop inside the PET support can be a major contributor (up to 85%) for a significant deviation of the membrane potential from the ideal Nernst potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA