Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Sci ; 33(6): e5024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801229

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of backbone amide exchange that serves as a proxy for the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and solvent accessibility. We demonstrate that our HDX rate data obtained in solution adds value to estimates of conformational heterogeneity derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site versus allosteric small-molecule inhibitors. These maps suggest distinct and widespread effects on protein dynamics relative to the apo form, including changes in locations distal (>35 Å) from the respective ligand binding sites. These results illuminate that allosteric inhibitors of PTP1B can induce unexpected changes in dynamics that extend beyond the previously understood allosteric network. Together, our data suggest a model of BB3 allostery in PTP1B that combines conformational restriction of active-site residues with compensatory liberation of distal residues that aid in entropic balancing. Overall, our work showcases the potential of HDX-MS for elucidating aspects of protein conformational dynamics and allosteric effects of small-molecule ligands and highlights the potential of integrating HDX-MS alongside other complementary methods, such as room-temperature X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations, to guide the development of new therapeutics.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Regulação Alostérica , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Modelos Moleculares , Domínio Catalítico
2.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071364

RESUMO

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter cell signaling or protein function. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.

3.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149290

RESUMO

Protein Tyrosine Phosphatase 1B (PTP1B) is a negative regulator of leptin signaling whose disruption protects against diet-induced obesity in mice. We investigated whether structural characterization of human PTP1B variant proteins might reveal precise mechanisms to target for weight loss therapy. We selected 12 rare variants for functional characterization from exomes from 997 people with persistent thinness and 200,000 people from UK Biobank. Seven of 12 variants impaired PTP1B function by increasing leptin-stimulated STAT3 phosphorylation in cells. Using room-temperature X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, and computational modeling, we determined that human variants modulate the 3-dimensional structure of PTP1B through distinct allosteric conduits that energetically link distal, highly ligandable structural regions to the active site. These studies inform the design of allosteric PTP1B inhibitors for the treatment of obesity.

4.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503000

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a validated therapeutic target for obesity, diabetes, and certain types of cancer. In particular, allosteric inhibitors hold potential for therapeutic use, but an incomplete understanding of conformational dynamics and allostery in this protein has hindered their development. Here, we interrogate solution dynamics and allosteric responses in PTP1B using high-resolution hydrogen-deuterium exchange mass spectrometry (HDX-MS), an emerging and powerful biophysical technique. Using HDX-MS, we obtain a detailed map of the solution dynamics of apo PTP1B, revealing several flexible loops interspersed among more constrained and rigid regions within the protein structure, as well as local regions that exchange faster than expected from their secondary structure and buriedness. We demonstrate that our HDX rate data obtained in solution adds value to predictions of dynamics derived from a pseudo-ensemble constructed from ~200 crystal structures of PTP1B. Furthermore, we report HDX-MS maps for PTP1B with active-site vs. allosteric small-molecule inhibitors. These maps reveal distinct, dramatic, and widespread effects on protein dynamics relative to the apo form, including changes to dynamics in locations distal (>35 Å) from the respective ligand binding sites. These results help shed light on the allosteric nature of PTP1B and the surprisingly far-reaching consequences of inhibitor binding in this important protein. Overall, our work showcases the potential of HDX-MS for elucidating protein conformational dynamics and allosteric effects of small-molecule ligands, and highlights the potential of integrating HDX-MS alongside other complementary methods to guide the development of new therapeutics.

5.
Biochem J ; 435(3): 629-39, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21323638

RESUMO

The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A-RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes
6.
Elife ; 72018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596046

RESUMO

Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.


Assuntos
Insulina/química , Insulina/metabolismo , Insulisina/química , Insulisina/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteólise , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA