Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Annu Rev Immunol ; 34: 421-47, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26907213

RESUMO

Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.


Assuntos
Hipersensibilidade/fisiopatologia , Inflamação , Neuroimunomodulação , Dor/fisiopatologia , Animais , Autoimunidade , Comunicação Celular , Citocinas/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neuropeptídeos/metabolismo
2.
Nat Immunol ; 25(7): 1296-1305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806708

RESUMO

Inflammatory pain results from the heightened sensitivity and reduced threshold of nociceptor sensory neurons due to exposure to inflammatory mediators. However, the cellular and transcriptional diversity of immune cell and sensory neuron types makes it challenging to decipher the immune mechanisms underlying pain. Here we used single-cell transcriptomics to determine the immune gene signatures associated with pain development in three skin inflammatory pain models in mice: zymosan injection, skin incision and ultraviolet burn. We found that macrophage and neutrophil recruitment closely mirrored the kinetics of pain development and identified cell-type-specific transcriptional programs associated with pain and its resolution. Using a comprehensive list of potential interactions mediated by receptors, ligands, ion channels and metabolites to generate injury-specific neuroimmune interactomes, we also uncovered that thrombospondin-1 upregulated by immune cells upon injury inhibited nociceptor sensitization. This study lays the groundwork for identifying the neuroimmune axes that modulate pain in diverse disease contexts.


Assuntos
Nociceptores , Dor , Animais , Camundongos , Dor/imunologia , Dor/metabolismo , Nociceptores/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Masculino , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Trombospondina 1/metabolismo , Trombospondina 1/genética , Pele/imunologia , Pele/metabolismo , Pele/patologia , Zimosan , Análise de Célula Única , Neuroimunomodulação , Perfilação da Expressão Gênica , Neutrófilos/imunologia , Neutrófilos/metabolismo
3.
Cell ; 179(6): 1342-1356.e23, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31759698

RESUMO

Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Proteína SMARCB1/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos/genética , Feminino , Genoma Humano , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Domínios Proteicos , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo
4.
Cell ; 171(4): 836-848.e13, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28988768

RESUMO

Adrenergic stimulation promotes lipid mobilization and oxidation in brown and beige adipocytes, where the harnessed energy is dissipated as heat in a process known as adaptive thermogenesis. The signaling cascades and energy-dissipating pathways that facilitate thermogenesis have been extensively described, yet little is known about the counterbalancing negative regulatory mechanisms. Here, we identify a two-pore-domain potassium channel, KCNK3, as a built-in rheostat negatively regulating thermogenesis. Kcnk3 is transcriptionally wired into the thermogenic program by PRDM16, a master regulator of thermogenesis. KCNK3 antagonizes norepinephrine-induced membrane depolarization by promoting potassium efflux in brown adipocytes. This limits calcium influx through voltage-dependent calcium channels and dampens adrenergic signaling, thereby attenuating lipolysis and thermogenic respiration. Adipose-specific Kcnk3 knockout mice display increased energy expenditure and are resistant to hypothermia and obesity. These findings uncover a critical K+-Ca2+-adrenergic signaling axis that acts to dampen thermogenesis, maintain tissue homeostasis, and reveal an electrophysiological regulatory mechanism of adipocyte function.


Assuntos
Tecido Adiposo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Termogênese , Adipócitos Marrons/metabolismo , Tecido Adiposo/patologia , Animais , Separação Celular , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Obesidade/patologia , Canais de Potássio de Domínios Poros em Tandem/genética
5.
Nat Immunol ; 24(3): 382-384, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823407
6.
Nature ; 634(8033): 440-446, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232162

RESUMO

In naive individuals, sensory neurons directly detect and respond to allergens, leading to both the sensation of itch and the activation of local innate immune cells, which initiate the allergic immune response1,2. In the setting of chronic allergic inflammation, immune factors prime sensory neurons, causing pathologic itch3-7. Although these bidirectional neuroimmune circuits drive responses to allergens, whether immune cells regulate the set-point for neuronal activation by allergens in the naive state is unknown. Here we describe a γδ T cell-IL-3 signalling axis that controls the allergen responsiveness of cutaneous sensory neurons. We define a poorly characterized epidermal γδ T cell subset8, termed GD3 cells, that produces its hallmark cytokine IL-3 to promote allergic itch and the initiation of the allergic immune response. Mechanistically, IL-3 acts on Il3ra-expressing sensory neurons in a JAK2-dependent manner to lower their threshold for allergen activation without independently eliciting itch. This γδ T cell-IL-3 signalling axis further acts by means of STAT5 to promote neuropeptide production and the initiation of allergic immunity. These results reveal an endogenous immune rheostat that sits upstream of and governs sensory neuronal responses to allergens on first exposure. This pathway may explain individual differences in allergic susceptibility and opens new therapeutic avenues for treating allergic diseases.


Assuntos
Hipersensibilidade , Interleucina-3 , Linfócitos Intraepiteliais , Prurido , Receptores de Antígenos de Linfócitos T gama-delta , Células Receptoras Sensoriais , Animais , Feminino , Humanos , Masculino , Camundongos , Alérgenos/administração & dosagem , Alérgenos/imunologia , Suscetibilidade a Doenças , Epiderme/imunologia , Epiderme/inervação , Epiderme/patologia , Hipersensibilidade/imunologia , Interleucina-3/imunologia , Interleucina-3/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Prurido/imunologia , Prurido/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/imunologia , Transdução de Sinais/imunologia , Fator de Transcrição STAT5/metabolismo , Pele/imunologia , Pele/inervação , Pele/patologia
7.
Cell ; 157(7): 1527-34, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949966

RESUMO

UV light is an established carcinogen, yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize proopiomelanocortin (POMC) that is processed to melanocyte-stimulating hormone, inducing tanning. We show that, in rodents, another POMC-derived peptide, ß-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in ß-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. Although primordial UV addiction, mediated by the hedonic action of ß-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in humans.


Assuntos
Comportamento Aditivo , Pele/efeitos da radiação , beta-Endorfina/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pele/metabolismo , Raios Ultravioleta , beta-Endorfina/genética
8.
Nature ; 611(7935): 405-412, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323780

RESUMO

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Nociceptores , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Melanoma/imunologia , Melanoma/patologia , Nociceptores/fisiologia , Células Receptoras Sensoriais/metabolismo , Neuritos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Taxa de Sobrevida , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Genes RAG-1/genética , Humanos , Biópsia , Prognóstico
9.
Cell ; 143(4): 628-38, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074052

RESUMO

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


Assuntos
Canais de Cálcio/genética , Proteínas de Drosophila/genética , Drosophila/genética , Dor/genética , Adulto , Animais , Dor nas Costas/genética , Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Temperatura Alta , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Interferência de RNA
12.
Cell Mol Life Sci ; 81(1): 315, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066803

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a disabling side effect of cancer chemotherapy that can often limit treatment options for cancer patients or have life-long neurodegenerative consequences that reduce the patient's quality of life. CIPN is caused by the detrimental actions of various chemotherapeutic agents on peripheral axons. Currently, there are no approved preventative measures or treatment options for CIPN, highlighting the need for the discovery of novel therapeutics and improving our understanding of disease mechanisms. In this study, we utilized human-induced pluripotent stem cell (hiPSC)-derived motor neurons as a platform to mimic axonal damage after treatment with vincristine, a chemotherapeutic used for the treatment of breast cancers, osteosarcomas, and leukemia. We screened a total of 1902 small molecules for neuroprotective properties in rescuing vincristine-induced axon growth deficits. From our primary screen, we identified 38 hit compounds that were subjected to secondary dose response screens. Six compounds showed favorable pharmacological profiles - AZD7762, A-674563, Blebbistatin, Glesatinib, KW-2449, and Pelitinib, all novel neuroprotectants against vincristine toxicity to neurons. In addition, four of these six compounds also showed efficacy against vincristine-induced growth arrest in human iPSC-derived sensory neurons. In this study, we utilized high-throughput screening of a large library of compounds in a therapeutically relevant assay. We identified several novel compounds that are efficacious in protecting different neuronal subtypes from the toxicity induced by a common chemotherapeutic agent, vincristine which could have therapeutic potential in the clinic.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fármacos Neuroprotetores , Vincristina , Vincristina/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Fármacos Neuroprotetores/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Células Cultivadas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
13.
J Neurosci ; 43(26): 4775-4794, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37277179

RESUMO

The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.


Assuntos
Axônios , Traumatismos da Medula Espinal , Ratos , Humanos , Masculino , Animais , Axônios/fisiologia , Integrinas/metabolismo , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais/fisiologia
14.
Immunity ; 42(3): 403-5, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25786172

RESUMO

Central nervous system trauma induces marked inflammation that has beneficial and deleterious consequences. In a recent issue of Neuron, Gadani et al. (2015) show that injured spinal cord releases the alarmin IL-33 to drive chemokines that recruit monocytes and promote recovery.


Assuntos
Doenças do Sistema Nervoso Central , Regulação da Expressão Gênica/fisiologia , Interleucinas/metabolismo , Neuroglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Animais , Feminino , Masculino
15.
Cell ; 137(6): 987-8, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524498

RESUMO

Contrary to current models, Scherrer et al. (2009) provide evidence that mu and delta opioid receptors are not expressed by the same pain-sensing neurons. In mice, agonists for these receptors produce analgesia restricted to either noxious heat or mechanical stimuli, implying that the receptors act on distinct fibers to mediate completely different types of pain relief.


Assuntos
Dor , Receptores Opioides delta/fisiologia , Receptores Opioides mu/fisiologia , Analgésicos Opioides/farmacologia , Animais , Temperatura Alta , Mecanorreceptores/fisiologia , Camundongos , Nociceptores/fisiologia , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas
16.
Nature ; 561(7724): 547-550, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209395

RESUMO

Current models of somatosensory perception emphasize transmission from primary sensory neurons to the spinal cord and on to the brain1-4. Mental influence on perception is largely assumed to occur locally within the brain. Here we investigate whether sensory inflow through the spinal cord undergoes direct top-down control by the cortex. Although the corticospinal tract (CST) is traditionally viewed as a primary motor pathway5, a subset of corticospinal neurons (CSNs) originating in the primary and secondary somatosensory cortex directly innervate the spinal dorsal horn via CST axons. Either reduction in somatosensory CSN activity or transection of the CST in mice selectively impairs behavioural responses to light touch without altering responses to noxious stimuli. Moreover, such CSN manipulation greatly attenuates tactile allodynia in a model of peripheral neuropathic pain. Tactile stimulation activates somatosensory CSNs, and their corticospinal projections facilitate light-touch-evoked activity of cholecystokinin interneurons in the deep dorsal horn. This touch-driven feed-forward spinal-cortical-spinal sensitization loop is important for the recruitment of spinal nociceptive neurons under tactile allodynia. These results reveal direct cortical modulation of normal and pathological tactile sensory processing in the spinal cord and open up opportunities for new treatments for neuropathic pain.


Assuntos
Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Tratos Piramidais/fisiopatologia , Tato/fisiologia , Animais , Axônios , Colecistocinina/metabolismo , Feminino , Membro Posterior/fisiopatologia , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Interneurônios/metabolismo , Masculino , Camundongos , Neuralgia/patologia , Nociceptividade/fisiologia , Tratos Piramidais/patologia , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia
17.
Nature ; 563(7732): 564-568, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405245

RESUMO

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.


Assuntos
Doenças Autoimunes/imunologia , Biopterinas/análogos & derivados , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Administração Oral , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Biopterinas/biossíntese , Biopterinas/metabolismo , Biopterinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Coenzimas/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Humanos , Hipersensibilidade/imunologia , Ferro/metabolismo , Cinurenina/metabolismo , Cinurenina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
18.
J Immunol ; 204(2): 257-263, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31907267

RESUMO

Sensory neurons and immune cells share a common microenvironmental niche for surveying tissue integrity. The immune and nervous systems both sense deviations in homeostasis and initiate protective responses and, upon malfunction, also jointly contribute to disease. Barrier tissues are heavily innervated by nociceptors, the sensory neurons that detect noxious stimuli, leading to pain and itch. The same tissues are also home to diverse immune cells that respond to infections and injury. The physical proximity of nociceptors and immune cells allows for direct local interactions between the two, independent of the CNS. We discuss in this study their ligand-receptor-based interactions and propose the need to shift from studying individual neuroimmune interactions to exploring the reciprocal neuroimmune interaction network in its entirety: the "neuroimmune interactome." Identification of the nature of the interactome in health and its plasticity in disease will unravel the functional consequences of interactions between nociceptors and immune cells.


Assuntos
Neuroimunomodulação/imunologia , Plasticidade Neuronal/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Humanos
19.
J Allergy Clin Immunol ; 147(6): 2330-2342, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33453289

RESUMO

BACKGROUND: Lung nociceptor neurons amplify immune cell activity and mucus metaplasia in response to an inhaled allergen challenge in sensitized mice. OBJECTIVE: We sought to identify the cellular mechanisms by which these sensory neurons are activated subsequent to allergen exposure. METHODS: We used calcium microscopy and electrophysiologic recording to assess whether vagal neurons directly respond to the model allergen ovalbumin (OVA). Next, we generated the first nociceptor-specific FcεR1γ knockdown (TRPV1Cre::FcεR1γfl/fl) mice to assess whether this targeted invalidation would affect the severity of allergic inflammation in response to allergen challenges. RESULTS: Lung-innervating jugular nodose complex ganglion neurons express the high-affinity IgE receptor FcεR1, the levels of which increase in OVA-sensitized mice. FcεR1γ-expressing vagal nociceptor neurons respond directly to OVA complexed with IgE with depolarization, action potential firing, calcium influx, and neuropeptide release. Activation of vagal neurons by IgE-allergen immune complexes, through the release of substance P from their peripheral terminals, directly amplifies TH2 cell influx and polarization in the airways. Allergic airway inflammation is decreased in TRPV1Cre::FcεR1γfl/fl mice and in FcεR1α-/- mice into which bone marrow has been transplanted. Finally, increased in vivo circulating levels of IgE following allergen sensitization enhances the responsiveness of FcεR1 to immune complexes in both mouse jugular nodose complex ganglion neurons and human induced pluripotent stem cell-derived nociceptors. CONCLUSIONS: Allergen sensitization triggers a feedforward inflammatory loop between IgE-producing plasma cells, FcεR1-expressing vagal sensory neurons, and TH2 cells, which helps to both initiate and amplify allergic airway inflammation. These data highlight a novel target for reducing allergy, namely, FcεR1γ expressed by nociceptors.


Assuntos
Expressão Gênica , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Receptores de IgE/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Alérgenos/imunologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Hipersensibilidade/genética , Hipersensibilidade/patologia , Camundongos , Camundongos Knockout , Neurônios/imunologia , Neurônios/metabolismo , Nociceptores/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Receptores de IgE/metabolismo , Mucosa Respiratória/patologia , Substância P/metabolismo , Nervo Vago
20.
Nature ; 515(7526): 274-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307057

RESUMO

Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-ß plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-ß peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-ß-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-ß species and phosphorylated tau but did not demonstrate amyloid-ß plaques or neurofibrillary tangles. Here we report that FAD mutations in ß-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-ß, including amyloid-ß plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-ß generation with ß- or γ-secretase inhibitors not only decreased amyloid-ß pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-ß-mediated tau phosphorylation. We have successfully recapitulated amyloid-ß and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Espaço Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/patologia , Neuritos/metabolismo , Fosforilação , Presenilina-1/metabolismo , Agregação Patológica de Proteínas , Reprodutibilidade dos Testes , Proteínas tau/química , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA