Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Pathol ; 185(12): 3290-303, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26458765

RESUMO

Type 17 helper T-cell cytokines have been implicated in the pathogenesis of inflammatory bowel disease, a chronic condition affecting the gastrointestinal tract, but information regarding their contribution to pathology in different regions of the gut is lacking. By using a murine model of bacteria-induced typhlocolitis, we investigated the role of IL-17A, IL-17F, and IL-22 in cecal versus colonic inflammation. Cecal, but not colonic, pathology in C57BL/6 mice inoculated with Helicobacter hepaticus plus anti-IL-10 receptor (IL-10R) monoclonal antibody was exacerbated by co-administration of anti-IL-17A monoclonal antibody, suggesting a disease-protective role for IL-17A in the cecum. In contrast, anti-IL-17F had no effect on H. hepaticus-induced intestinal pathology. Neutralization of IL-22 prevented the development of colonic, but not cecal, inflammation in H. hepaticus-infected anti-IL-10R-treated mice, demonstrating a pathogenic role for IL-22 in the colon. Analysis of transcript levels revealed differential expression of IL-22R, IL-22 binding protein, and IL-23R between cecum and colon, a finding that may help explain why these tissues respond differently after anti-IL-22 treatment. Analysis of microarray data from healthy human intestine further revealed significant differences in cytokine receptor transcript levels (including IL-22RA1 and IL-23R) in distinct parts of the human gut. Together, our findings demonstrate that individual type 17 helper T-cell cytokines can have proinflammatory or anti-inflammatory effects in different regions of the intestine, an observation that may have implications for interventions against human inflammatory bowel disease.


Assuntos
Colite/microbiologia , Infecções por Helicobacter/imunologia , Helicobacter hepaticus , Interleucina-17/imunologia , Interleucinas/imunologia , Tiflite/microbiologia , Animais , Anticorpos Monoclonais/imunologia , Colite/imunologia , Colite/prevenção & controle , Feminino , Expressão Gênica/imunologia , Humanos , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucinas/biossíntese , Interleucinas/genética , Intestinos/imunologia , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Receptores de Citocinas/biossíntese , Tiflite/imunologia , Interleucina 22
2.
J Biol Chem ; 288(2): 1409-19, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184956

RESUMO

Protein biosynthesis and extracellular secretion are essential biological processes for therapeutic protein production in mammalian cells, which offer the capacity for correct folding and proper post-translational modifications. In this study, we have generated bispecific therapeutic fusion proteins in mammalian cells by combining a peptide and an antibody into a single open reading frame. A neutralizing peptide directed against interleukin-17A (IL17A) was genetically fused to the N termini of an anti-IL22 antibody, through either the light chain, the heavy chain, or both chains. Although the resulting fusion proteins bound and inhibited IL22 with the same affinity and potency as the unmodified anti-IL22 antibody, the peptide modality in the fusion scaffold was not active in the cell-based assay due to the N-terminal degradation. When a glutamine residue was introduced at the N terminus, which can be cyclized to form pyroglutamate in mammalian cells, the IL17A neutralization activity of the fusion protein was restored. Interestingly, the mass spectroscopic analysis of the purified fusion protein revealed an unexpected O-linked glycosylation modification at threonine 5 of the anti-IL17A peptide. The subsequent removal of this post-translational modification by site-directed mutagenesis drastically enhanced the IL17A binding affinity and neutralization potency for the resulting fusion protein. These results provide direct experimental evidence that post-translational modifications during protein biosynthesis along secretory pathways play critical roles in determining the structure and function of therapeutic proteins produced by mammalian cells. The newly engineered peptide-antibody genetic fusion is promising for therapeutically targeting multiple antigens in a single antibody-like molecule.


Assuntos
Anticorpos Biespecíficos/genética , Interleucina-17/imunologia , Interleucinas/imunologia , Polissacarídeos/química , Ácido Pirrolidonocarboxílico/química , Sequência de Aminoácidos , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Interleucina 22
3.
Protein Expr Purif ; 87(1): 27-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069765

RESUMO

The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34-38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63-69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.


Assuntos
Interleucina-17/biossíntese , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/biossíntese , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Células HEK293 , Humanos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/química , Interleucina-17/química , Meliteno/biossíntese , Meliteno/química , Dados de Sequência Molecular , Peso Molecular , Mapeamento de Peptídeos , Sinais Direcionadores de Proteínas , Proteínas Recombinantes de Fusão/química , Espectrometria de Massas em Tandem
4.
J Immunol ; 185(7): 4213-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817881

RESUMO

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor implicated in a number of diseases including autoimmune diseases. To further understand the pathogenic mechanism of RAGE in these diseases, we searched for additional ligands. We discovered that C3a bound to RAGE with an EC(50) of 1.9 nM in an ELISA, and the binding was increased both in magnitude (by >2-fold) and in affinity (EC(50) 70 pM) in the presence of human stimulatory unmethylated cytosine-guanine-rich DNA A (hCpGAs). Surface plasmon resonance and fluorescence anisotropy analyses demonstrated that hCpGAs could bind directly to RAGE and C3a and form a ternary complex. In human PBMCs, C3a increased IFN-α production in response to low levels of hCpGAs, and this synergy was blocked by soluble RAGE or by an Ab directed against RAGE. IFN-α production was reduced in response to mouse CpGAs and C3a in RAGE(-/-) mouse bone marrow cells compared wild-type mice. Taken together, these data demonstrate that RAGE is a receptor for C3a and CpGA. Through direct interaction, C3a and CpGA synergize to increase IFN-α production in a RAGE-dependent manner and stimulate an innate immune response. These findings indicate a potential role of RAGE in autoimmune diseases that show accumulation of immunostimulatory DNA and C3a.


Assuntos
Complemento C3a/metabolismo , DNA/metabolismo , Interferon gama/metabolismo , Oligonucleotídeos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Complemento C3a/imunologia , DNA/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Oligonucleotídeos/imunologia , Ligação Proteica , Receptor para Produtos Finais de Glicação Avançada/imunologia , Ressonância de Plasmônio de Superfície
5.
Immunol Rev ; 226: 87-102, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19161418

RESUMO

T-helper 17 (Th17) cells are a new lineage of CD4(+) T cells that are characterized by their production of interleukin-17A (IL-17A). Recent studies show that these cells can also express IL-17F, IL-22, and IL-21. IL-17A and IL-17F can form a heterodimeric cytokine, which mediates biological activities, at least in part, through shared receptors with IL-17A and IL-17F homodimers. The cytokines made by Th17 cells represent three distinct gene families, highlighting the unique biology of these cells. Accumulating data support a role for Th17 cells and these cytokines in inflammatory processes and in animal models of autoimmunity or inflammation. Emerging data in clinical trials support our understanding of the importance of Th17 cells in inflammatory disease. Future clinical studies will allow us to evaluate the role of each cytokine independently in contributing to human diseases with immune-mediated pathologies and to design optimal cytokine-targeted therapies for these diseases.


Assuntos
Interleucina-17/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Dimerização , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Interleucina 22
6.
Anal Biochem ; 399(2): 284-92, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20018163

RESUMO

Vanin-1 is a pantetheinase that catalyzes the hydrolysis of pantetheine to produce pantothenic acid (vitamin B5) and cysteamine. Reported here is a highly sensitive fluorescent assay using a novel fluorescently labeled pantothenate derivative. The assay has been used for characterization of a soluble version of human vanin-1 recombinant protein, identification and characterization of hits from high-throughput screening (HTS), and quantification of vanin pantothenase activity in cell lines and tissues. Under optimized assay conditions, we quantified vanin pantothenase activity in tissue lysate and found low activity in lung and liver but high activity in kidney. We demonstrated that the purified recombinant vanin-1 consisting of the extracellular portion without the glycosylphosphatidylinositol (GPI) linker was highly active with an apparent K(m) of 28 microM for pantothenate-7-amino-4-methylcoumarin (pantothenate-AMC), which was converted to pantothenic acid and AMC based on liquid chromatography-mass spectrometry (LC-MS) analysis. The assay also performed well in a 384-well microplate format under initial rate conditions (10% conversion) with a signal-to-background ratio (S/B) of 7 and a Z factor of 0.75. Preliminary screening of a library of 1280 pharmaceutically active compounds identified inhibitors with novel chemical scaffolds. This assay will be a powerful tool for target validation and drug lead identification and characterization.


Assuntos
Amidoidrolases/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/química , Espectrometria de Massas/métodos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Proteínas Ligadas por GPI , Ensaios de Triagem em Larga Escala , Humanos , Rim/enzimologia , Camundongos , Dados de Sequência Molecular , Ácido Pantotênico/química , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
7.
J Immunol ; 181(4): 2799-805, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18684971

RESUMO

IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.


Assuntos
Interleucina-17/fisiologia , Receptores de Interleucina-17/fisiologia , Receptores de Interleucina/fisiologia , Transdução de Sinais/imunologia , Linhagem Celular , Dimerização , Relação Dose-Resposta Imunológica , Humanos , Interleucina-17/antagonistas & inibidores , Interleucina-17/química , Interleucina-17/metabolismo , Ligação Proteica/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/metabolismo
8.
Int Immunopharmacol ; 4(5): 693-708, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15120653

RESUMO

Interleukin 22 (IL-22) is a cytokine induced during both innate and adaptive immune responses. It can effect an acute phase response, implicating a role for IL-22 in mechanisms of inflammation. IL-22 requires the presence of the IL-22 receptor (IL-22R) and IL-10 receptor 2 (IL-10R2) chains, two members of the class II cytokine receptor family (CRF2), to effect signal transduction within a cell. We studied the interaction between human IL-22 and the extracellular domains (ECD) of its receptor chains in an enzyme-linked immunoabsorbant assay (ELISA)-based format, using biotinylated IL-22 (bio-IL-22) and receptor-fusions containing the ECD of a receptor fused to the Fc of hIgG1 (IL-22R-Fc and IL-10R2-Fc). IL-22 has measurable affinity for IL-22R-Fc homodimer and undetectable affinity for IL-10R2. IL-22 has substantially greater affinity for IL-22R/IL-10R2-Fc heterodimers. Further analyses involving sequential additions of receptor homodimers and cytokine indicates that the IL-10R2(ECD) binds to a surface created by the interaction between IL-22 and the IL-22R(ECD), and thereby further stabilizes the association of IL-22 within this cytokine-receptor-Fc complex. Both a neutralizing rat monoclonal antibody, specific for human IL-22, and human IL-22BP-Fc, an Fc-fusion of the secreted IL-22 binding-protein and proposed natural antagonist for IL-22, bind to similar cytokine epitopes that may overlap the binding site for IL-22R(ECD). Another rat monoclonal antibody, specific for IL-22, binds to an epitope that may overlap a separate binding site for IL-10R2(ECD). We propose, based on this data, a temporal model for the development of a functional IL-22 cytokine-receptor complex.


Assuntos
Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Animais , Células CHO , Cricetinae , Dimerização , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Interleucinas/farmacologia , Receptores de Interleucina/efeitos dos fármacos , Receptores de Interleucina-10 , Fatores de Tempo , Interleucina 22
9.
Int J Cell Biol ; 2013: 273086, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690780

RESUMO

Over the lifespan of therapeutic proteins, from the point of biosynthesis to the complete clearance from tested subjects, they undergo various biological modifications. Therapeutic influences and molecular mechanisms of these modifications have been well appreciated for some while remained less understood for many. This paper has classified these modifications into multiple categories, according to their processing locations and enzymatic involvement during the trafficking events. It also focuses on the underlying mechanisms and structural-functional relationship between modifications and therapeutic properties. In addition, recent advances in protein engineering, cell line engineering, and process engineering, by exploring these complex cellular processes, are discussed and summarized, for improving functional characteristics and attributes of protein-based biopharmaceutical products.

10.
J Inflamm (Lond) ; 9: 11, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22448747

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) is activated by bacterial endotoxin, a prototypical pathogen-associated molecular pattern (PAMP). It has been suggested that TLR4 can also be activated by damage-associated molecular pattern (DAMP) proteins such as HSP70. It remains a challenge to provide unequivocal evidence that DAMP proteins themselves play a role in TLR4 activation, as the DAMP proteins used are often contaminated with endotoxin and other TLR ligands introduced during protein expression and/or purification. RESULTS: Here we report that the activation of TLR4 on primary human macrophage cultures by recombinant HSP70 is not solely due to contaminating endotoxin. Polymyxin B pretreatment of HSP70 preparations to neutralize contaminating endotoxin caused significant reductions in the amount of TNF-α induced by the recombinant protein as determined by ELISA. However, digestion of HSP70 with Proteinase K-agarose beads also dramatically reduced the TNF-α response of macrophages to HSP70, while leaving levels of contaminating endotoxin largely unchanged relative to controls. CONCLUSIONS: These results indicate that the stimulatory effect of recombinant HSP70 requires both the presence of endotoxin and structural integrity of the heat shock protein itself.

11.
Science ; 332(6025): 65-8, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21350122

RESUMO

Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F-containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.


Assuntos
Candidíase Mucocutânea Crônica/genética , Candidíase Mucocutânea Crônica/imunologia , Interleucina-17/imunologia , Candida albicans , Criança , Pré-Escolar , Feminino , Genes Dominantes , Genes Recessivos , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Receptores de Interleucina-17/genética , Transdução de Sinais/genética , Células Th17/imunologia
12.
J Biol Chem ; 282(18): 13447-55, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17355969

RESUMO

IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Interleucina-17/imunologia , Ativação Linfocitária/imunologia , Motivos de Aminoácidos , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células CHO , Cricetinae , Cricetulus , Cisteína/genética , Cisteína/imunologia , Dimerização , Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Imunidade Celular , Interleucina-17/biossíntese , Interleucina-17/genética , Interleucina-17/farmacologia , Ativação Linfocitária/efeitos dos fármacos
13.
J Immunol ; 179(11): 7791-9, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18025225

RESUMO

IL-17A and IL-17F are related homodimeric proteins of the IL-17 family produced by Th17 cells. In this study, we show that mouse Th17 cells also produce an IL-17F/A heterodimeric protein. Whereas naive CD4(+) T cells differentiating toward the Th17 cell lineage expressed IL-17F/A in higher amounts than IL-17A/A homodimer and in lower amounts than IL-17F/F homodimer, differentiated Th17 cells expressed IL-17F/A in higher amounts than either homodimer. In vitro, IL-17F/A was more potent than IL-17F/F and less potent than IL-17A/A in regulating CXCL1 expression. Neutralization of IL-17F/A with an IL-17A-specific Ab, and not with an IL-17F-specific Ab, reduced the majority of IL-17F/A-induced CXCL1 expression. To study these cytokines in vivo, we established a Th17 cell adoptive transfer model characterized by increased neutrophilia in the airways. An IL-17A-specific Ab completely prevented Th17 cell-induced neutrophilia and CXCL5 expression, whereas Abs specific for IL-17F or IL-22, a cytokine also produced by Th17 cells, had no effects. Direct administration of mouse IL-17A/A or IL-17F/A, and not IL-17F/F or IL-22, into the airways significantly increased neutrophil and chemokine expression. Taken together, our data elucidate the regulation of IL-17F/A heterodimer expression by Th17 cells and demonstrate an in vivo function for this cytokine in airway neutrophilia.


Assuntos
Interleucina-17/biossíntese , Pulmão/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva/métodos , Animais , Dimerização , Modelos Animais de Doenças , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
14.
Proc Natl Acad Sci U S A ; 102(50): 18117-22, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16330774

RESUMO

Myostatin is a secreted protein that normally functions as a negative regulator of muscle growth. Agents capable of blocking the myostatin signaling pathway could have important applications for treating human muscle degenerative diseases as well as for enhancing livestock production. Here we describe a potent myostatin inhibitor, a soluble form of the activin type IIB receptor (ACVR2B), which can cause dramatic increases in muscle mass (up to 60% in 2 weeks) when injected into wild-type mice. Furthermore, we show that the effect of the soluble receptor is attenuated but not eliminated in Mstn(-/-) mice, suggesting that at least one other ligand in addition to myostatin normally functions to limit muscle growth. Finally, we provide genetic evidence that these ligands signal through both activin type II receptors, ACVR2 and ACVR2B, to regulate muscle growth in vivo.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/farmacologia , Animais , Ligantes , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Miostatina , Tamanho do Órgão
15.
Proc Natl Acad Sci U S A ; 100(26): 15842-6, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14671324

RESUMO

Myostatin is a transforming growth factor beta family member that acts as a negative regulator of skeletal muscle growth. Myostatin circulates in the blood of adult mice in a noncovalently held complex with other proteins, including its propeptide, which maintain the C-terminal dimer in a latent, inactive state. This latent form of myostatin can be activated in vitro by treatment with acid; however, the mechanisms by which latent myostatin is activated in vivo are unknown. Here, we show that members of the bone morphogenetic protein-1/tolloid (BMP-1/TLD) family of metalloproteinases can cleave the myostatin propeptide in this complex and can thereby activate latent myostatin. Furthermore, we show that a mutant form of the propeptide resistant to cleavage by BMP-1/TLD proteinases can cause significant increases in muscle mass when injected into adult mice. These findings raise the possibility that members of the BMP-1/TLD family may be involved in activating latent myostatin in vivo and that molecules capable of inhibiting these proteinases may be effective agents for increasing muscle mass for both human therapeutic and agricultural applications.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Proteínas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteína Morfogenética Óssea 1 , Células CHO , Cricetinae , Feminino , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Miostatina , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Metaloproteases Semelhantes a Toloide
16.
Biochem Biophys Res Commun ; 300(4): 965-71, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12559968

RESUMO

A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Peso Corporal , Células CHO , Cricetinae , Meios de Cultivo Condicionados , Feminino , Força da Mão , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Miostatina , Ligação Proteica , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA